
08. September 2017

Accessibility analysis for
emergency service vehicles

Supervisors:
Prof. Freckmann and Prof. Günther-Diringer

Benedikt Futterer
matriculation number 54856

 II

I Abstract
In this work a website should be developed to perform accessibility analyses for non-police
emergency services using only open source software and open data, because they can be adapted to
the personal needs and are free to use.

For this purpose we evaluate the suitability of OpenStreetMap as basis for the computation, as well
as different open source routing algorithms. These evaluations yield that OpenStreetMap data is
suitable to perform accessibility analyses, however it is still incomplete in some regions. Valhalla is
identified as the most suitable routing engine.
Important terms and algorithms are explained to support the comprehension. Additionally the state
of the art methods of accessibility analyses in the field of open source as well as proprietary ones are
mentioned and the most important parts of the code for the website are described.

The resulting webpage uses Valhalla as backend and OpenStreetMap as well as Nominatim as
services. Beside performing accessibility analyses it is possible to save, import, and merge results as
well as to compare the reachable area to the boundaries of the alarm response area. To review the
correctness of the computed isochrones they are compared with different routing services.

 III

II Acknowledgment
At the beginning of this work I would like to say thank you to all persons that supported me during
my work.

Thanks to

• the team of the Geofabrik, where I wrote my thesis for the friendly acceptance. My particular
thanks to Frederik Ramm who made it possible, to work on such an interesting topic there
and who ever supported me if it was necessary as well as for proofreading my report. Equally
I am grateful to Rory McCann for proofreading my report several times and his help with the
translation of discipline-specific words.

• my supervisors Prof. Bürg, Prof. Freckmann, and Prof. Günther-Diringer.
• Christian Stern for his programming support.
• Sabrina Futterer for proofreading my report.
• Hans-Peter Lehmann for the answers to all my silly questions and his clear explanations.

Last but not least I thank all here not namely mentioned persons that contributed to the success of
this work as well as my complete studies.

 IV

III Statutory declaration

I declare that I have authored this thesis independently that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either
literally or by content from the used sources.

 I hereby confirm that I have written the accompanying thesis by myself, without contributions from
any sources other than those cited in the text and acknowledgements.

This applies also to all graphics, drawings, maps and images included in the thesis.

.. ..

Place and date Signature

 V

IV Table of contents
I Abstract .. II

II Acknowledgment .. III

III Statutory declaration .. IV

IV Table of contents ... V

V List of figures .. VII

VI List of tables ..IX

VII List of abbreviations ...X

1 Introduction ... 1

1.1 Problem .. 1

1.2 Aim ... 1

1.3 Structure of the written thesis report .. 1

2 Definitions and explanations .. 3

2.1 Accessibility... 3

2.2 Network, Graph and Node-Edge model ... 3

2.3 Accessibility analysis.. 4

2.4 Emergency services ... 6

2.5 Response time and its separate phases ... 7

2.6 Isochrones... 9

2.7 Open source .. 9

2.8 OpenStreetMap .. 10

2.9 GeoJSON ... 12

3 The suitability of OpenStreetMap data for accessibility analysis ... 15

4 Algorithms ... 24

4.1 Routing algorithms .. 24

4.1.1 Dijkstra algorithm ... 24

4.1.2 A* algorithm ... 25

4.1.3 Contraction Hierarchies .. 26

4.2 Other algorithms ... 27

4.2.1 CONREC algorithm .. 27

4.2.2 Douglas-Peucker algorithm ... 30

5 State of the art methods of accessibility analysis .. 33

5.1 Circle-/beeline-method ... 33

5.2 Road Axis-Method ... 34

5.2.1 Manual methods .. 34

 VI

5.2.2 Digital non proprietary methods ... 35

5.2.3 Digital proprietary methods .. 42

6 Concept ... 43

6.1 Target definition ... 43

6.2 Graphical User Interface (GUI) ... 43

6.3 Profiles .. 46

6.4 Test and selection of the routing algorithm ... 48

7 Implementation ... 50

7.1 Graphical User Interface .. 51

7.1.1 Layout .. 52

7.1.2 Menus .. 55

7.2 Integration of Valhalla ... 57

7.2.1 Primitive map ... 57

7.2.2 Settings .. 58

7.3 Vehicle Profiles.. 60

7.4 Coded functionality ... 61

7.4.1 Isochrone computation... 61

7.4.2 File handling ... 65

7.4.3 Inspection of the result ... 72

7.4.4 Geocoder.. 75

7.4.5 Clear map function ... 76

8 Testing/ verification ... 77

9 Summary and outlook .. 79

9.1 Summary... 79

9.2 Outlook and possible improvements ... 79

List of literature .. 81

Appendix .. 91

i Glossary of specific words in the field of emergency services .. 91

 VII

V List of figures
Figure 1: The three types of network analyses according to Ralf Bill. ... 4
Figure 2: Result of an accessibility analysis of an undirected and unweighted graph. 5
Figure 3: Result of an accessibility analysis with a directed and weighted graph.. 6
Figure 4: Phases of an emergency. .. 8
Figure 5: Various kinds of Open source. .. 10
Figure 6: Logo of OpenStreetMap. .. 10
Figure 7: Example of several key-value pairs used in OpenStreetMap. .. 11
Figure 8: Example of an OSM-XML file... 12
Figure 9: Code example of a GeoJSON file. .. 14
Figure 10: Map section of Karlsruhe of OpenStreetMap.. .. 16
Figure 11: Map comparison of Karlsruhe. .. 16
Figure 12: Map section of Karamay of OpenStreetMap. .. 17
Figure 13: Map comparison of Karamay.. .. 17
Figure 14: Completeness of the OpenStreetMap road network. .. 19
Figure 15: Set speed limit values in OSM.. ... 20
Figure 16: Completeness of OSM building data in comparison to official data in Switzerland. 21
Figure 17: Finest mapped administrative boundary level worldwide. .. 22
Figure 18: Shortcut node and witness edge ... 26
Figure 19: (a) Four adjacent points are grouped to a rectangle. (b) After computation of the
coordinates of the center points four three-dimensional triangles can be drawn. (c) For each
isochrone level there is a contour plane. ... 29
Figure 20: All six possible intersection types of a triangle with a contour plane. 29
Figure 21: Result of the CONREC algorithm for one rectangle and one contour plane........................ 30
Figure 22: Process of the Douglas-Peucker algorithm. ... 31
Figure 23: Results for the generalization of a polyline by the use of the Douglas-Peucker algorithm.. 32
Figure 24: Definition of the reachable region with the circle or beeline method of Finnentrop. 33
Figure 25: Mechanical opisometer in use. ... 34
Figure 26: Definition of the reachable region with the polygon or road axis method of Finnentrop. .. 36
Figure 27: Example result of GraphHopper Isochrone API. .. 37
Figure 28: Example result of OpenRouteService. ... 39
Figure 29: Example of the OSRM-isochrone... 40
Figure 30: Example result of Valhalla... 41
Figure 31: GUI of the website. ... 44
Figure 32: Extended sidebar. ... 45
Figure 33: The File tab. .. 45
Figure 34: The Imprint tab... 46
Figure 35: The architecture of the project. .. 51
Figure 36: Favicon and title of the website. ... 51
Figure 37: The GUI of the project. ... 52
Figure 38: A tooltip explains the functionality of each button if it is unclear. 52
Figure 39: The functions inside the settings menu are also described by a tooltip. 53
Figure 40: Selecting the magnifier button opens the search location function. 54
Figure 41: Available settings for adapting the isochrone computation. ... 54
Figure 42: Settings to reset the map, handle files and check if all necessary areas are reachable within
the predefined time period. .. 55

 VIII

Figure 43: Definition of the tabs for isochrone computation, file handling and imprint...................... 55
Figure 44: Definition of the drop-down menu for choosing the desired vehicle via a select element. 56
Figure 45: Definition of the input field for the travel time. .. 56
Figure 46: Definition of the export and the import button... 56
Figure 47: Code snippet to add the OSM map to the map element. .. 58
Figure 48: Function HSVtoRGB. ... 59
Figure 49: Function to compute the color of each individual isochrone. .. 59
Figure 50: Code snippet that have to be changed in the valhalla_build_config file............................. 60
Figure 51: Code snippet of the first part of the generateIsochrones function. 62
Figure 52: Code used to delete all potentially existing marker, isochrone, and boundary layers. 62
Figure 53: Code extract of the last part of the generateIsochrone function. 63
Figure 54: Basic code of the addGeoJson function. .. 64
Figure 55: Result of the isochrone computation for the fire station Luzern Kleinmatt. 64
Figure 56: Code of the export function. ... 65
Figure 57: The file chooser displays only GeoJSON files. .. 66
Figure 58: Code of the import function. .. 67
Figure 59: Merge of two fire stations in Weinfelden and Bürglen, Thurgau, Switzerland.................... 68
Figure 60: First part of the merge function. ... 69
Figure 61: Resumption of the code of the merge function. .. 70
Figure 62: Merge function: The resulting isochrones are colored from green to red. 71
Figure 63: This extract of the merge function shows the export of the merged files. 71
Figure 64: In this extract of the addGeoJson function potentially existing redundant
FeatureCollections are eliminated... 72
Figure 65: The name of the city has to be inserted in the text field.. 73
Figure 66: Four isochrones around the fire station of Weinfelden, Thurgau, Switzerland. 73
Figure 67: Code for building the URL to request the boundary of a city or region from Nominatim. .. 74
Figure 68: Code to send the in the getBoundaryURL built request to Nominatim. 75
Figure 69: Code to add the boundaries to the map and to delete the boundaryLayer. 75
Figure 70: The code of the clear map function is located in the file map.js. 76
Figure 71: Discrepancies between the isochrones and the road network... 77
Figure 72: Isochrone computing problem of Valhalla... 78
Figure 73: Wrong results in case the starting point is close to a tunnel and in a tunnel. 78

 IX

VI List of tables
Table 1: Definition of the profiles. ... 47
Table 2: Examples of the most important vehicles of fire brigades, EMS, and THW inclusive their
assignment to the previous defined profiles.. 48
Table 3:Comparison between GraphHopper, OSRM, and Valhalla. The abbreviation CH stands for
Contraction Hierarchies. ... 49
Table 4:Used default profiles of Valhalla for each class. .. 61

 X

VII List of abbreviations
API Application Programming Interface

BOS Behörden und Organisationen mit Sicherheitsaufgaben
 (authorities and organizations with security tasks)
BRK Bayrisches Rotes Kreuz (Bavarian Red Cross)

CEN Comité Européen de Normalisation
 (European Committee for Standardization)
CH Contraction Hierarchies

DIN Indicator of a German Standard, in earlier times abbreviation for
 Deutsche Industrie Norm (German Industry Standard)
DIN SPEC DIN Specification, standard like specification

EMS Emergency medical services
EN Europäische Norm (European Standard)
ESRI Environmental Systems Research Institute Inc.
ETOPO1 Earth Topographic database 1 arc-minute
 (https://www.ngdc.noaa.gov/mgg/global)

FNFW DIN-Normenausschuss Feuerwehrwesen
 (DIN Standards Committee Firefighting and Fire Protection)

GeoJSON Geographic JavaScript Object Notation
GIS Geographic Information System
GMTED Global Multi-resolution Terrain Elevation Data 2010
 (https://topotools.cr.usgs.gov/gmted_viewer)
GUI Graphical User Interface

JSON JavaScript Object Notation
JSTS JavaScript Topology Suite

LOD Level of detail

NED National Elevation Dataset (https://nationalmap.gov/elevation.html)

ODbL Open Data Commons Open Database License
 (see https://opendatacommons.org/licenses/odbl)
OGC Open Geospatial Consortium
ORS Open Route Service
OSM OpenStreetMap
OSMF OpenStreetMap Foundation
OSRM Open Source Routing Machine

POI Point of interest
PPA Personal Package Archive

RFC Request for Comments

 XI

SPT Shortest Path Tree
SRTM Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm)
StAN Stärke- und Ausstattungsnachweisung (table of organization and equipment)

WGS World Geodetic System

 1

1 Introduction

1.1 Problem
This master thesis deals with the problem of performing an accessibility analysis for vehicles of
emergency services, especially for non-police emergency services. Although there are a lot of routing
services and accessibility analyses for ordinary vehicles like cars, there are none which take the
special characteristics of emergency service vehicles into account.
To be able to do such an analysis the selection of a suitable software and suitable data is needed. But
the suitability can only be evaluated if the requirements are known.
For this project it is desirable to use only open source software as well as open source data because
they can be adapted to the personal needs and are free to use. Moreover the routing service should
offer the possibility to compute isochrones. The choice of several starting points for the analyses is
desirable as well as a as quick as possible computation of the result. A comprehensive, current and
accurate base map and routing graph are also important requirements.

1.2 Aim
The aim of this work is the development of a website which allows users to perform an accessibility
analysis for non-police emergency services. The limitation to only non-police emergency service
vehicles is necessary, because they often start from a fixed location (like fire stations or ambulance
stations), whereas police cars are often on patrol. An example result of a similar project can be seen
in figure 26.

For this accessibility analysis OpenStreetMap data and existing open source routing software, which
was developed for OpenStreetMap, should be used. Therefore their suitability has to be evaluated
and the best fitting software has to be chosen.

In addition to that existing attempts to create an accessibility analysis for emergency service vehicles
are pointed out.

1.3 Structure of the written thesis report
Chapter 1 gives an overview of the problem and the aim of this work as well as the structure of this
report.

In chapter 2 important terms that are necessary to know later on, are defined.

The suitability of OpenStreetMap data for accessibility analysis is investigated in chapter 3.

Algorithms that are used to implement an accessibility analysis are explained in chapter 4.

The current state of the art of accessibility analysis methods is described in chapter 5.

In chapter 6 the concept of the solution developed in this work is presented. This includes a detailed
target definition, the presentation of the idea of a graphical user interface and a description of the
required profiles. Also a description of the tests of the available routing software for the backend and
selection of routing software is located here.

Corresponding to chapter 6 the implementation of the graphical user interface, the profiles and the
integration of the routing software are explained in chapter 7.

 2

The practical testing and verification of this website is described in chapter 8.

Finally chapter 9 gives a summary of this work and an outlook for further improvements and
research.

A glossary for the used emergency service specific words is attached in the appendix.

 3

2 Definitions and explanations

2.1 Accessibility
"Accessibility is [...] a slippery notion [...] one of those common terms that everyone uses until faced
with the problem of defining and measuring it"1 This quote from Peter Gould shows how important it
is to define exactly what is meant by the term accessibility in a report. The definition of accessibility
depends, among other things, on the scientific discipline, for example the accessibility of a server in
computer science, the accessibility of a customer hotline in customer support or the accessibility of a
location in earth sciences.2 In this paper accessibility is used in the field of earth sciences.

In this context, accessibility is the existence of a way from node A to node B within a network. The
network represents, for example, the road network, the railway network or a public transport
network. One or several restrictions can also be added to this like a certain travel mode (car, public
transport or wheelchair), travel costs (budget, distance or travel time) or traffic regulations (one-way
streets, turn or driving restrictions).3

Nowadays networks are often represented by graphs to be able to calculate the accessibility with a
computer. An example for such a graph is the node-edge model which will be explained in the next
section.

2.2 Network, Graph and Node-Edge model
According to the Duden dictionary, a network is the "Gesamtheit netzartig verbundener Leitungen,
Drähte, Linien, Adern oder Ähnliches" (in English: total net-like connected pipes, cables , lines, veins
or similar).4 In the field of earth sciences networks represent for example electricity nets, the
hydrographic network or the street network.5

A network can be represented by nodes and edges and therefore this model is often called node-
edge model. Edges represents power lines, rivers or streets and always connect two nodes. An edge
defines the two nodes it connects as adjacent. Nodes are endpoints of one or several edges and
represent electrical substations, confluences of rivers or junctions. All edges which end in the same
node are incident. In addition to that the definition of nodes is scale-dependent, too. In small-scale
maps nodes describe locations like cities, in public transport networks train or bus stations and in
large-scale maps crossings, road ends or general locations on which attributes are changing. This
model originates from graph theory. A complete node-edge model corresponds to a finite graph.6
"The position of the nodes, their distance from each other as well as the shape of the edges do not
necessarily represent a true to scale image of the reality".7 To adapt the graph to the reality it is
possible to add the direction and different costs as attributes to the edges. In this case the graph is
called a directed or weighted graph. If no attributes are added the graph is called undirected and
unweighted. A directed and weighted graph is called a network. The sequence of nodes that are

1 GOULD, 1969, p. 64
2 SCHWARZE, 2005
3 BARTELME, 2005, p. 124
4 DUDEN, 2017
5 BILL, 2010, p. 479
6 BARTELME, 2005, p. 75
7 BARTELME, 2005, p. 74

 4

connected by edges is called a path. If each node of the path is just used once the path is referred to
as a way. A cycle is a path, in which only the start and the end node are identical.86 oben

Graphs are mainly used to do the three types of network analyses: shortest path problem, facility
location problem and travelling salesman problem. An example for each of them can be found in
figure 1. For reasonable network analyses directed and weighted graphs are needed.
In the shortest path problem the optimal way to connect two locations is sought. This problem is
often also called lowest cost problem, because the optimal way depends on the chosen type of costs
like distance, time or travel costs. This is used for example for emergency service dispatching or
ordinary routing.
The facility location problem seeks for the best location of a facility in respect to various factors such
as accessibility to or from other places. Sample applications are a search for the best location of a
projected department store, hospital or non-police emergency service station (hereinafter referred
to as station) depending on several factors like travel costs, travel distance or travel time.
The aim of the travelling salesman problem is the computation of the optimal route from and to a
location via one or several waypoints. Therefore the starting point and endpoint have to be identical.
It is used for instance to plan the travel route of postmen, suppliers or travelling salesmen.9

Figure 1: The three types of network analyses according to Ralf Bill: Shortest path problem, facility location problem and
travelling salesman problem.5

2.3 Accessibility analysis
The definition of the accessibility analysis is dependent on the definition of term accessibility.
Generally an accessibility analysis is a computation of the accessibility within the graph. In this case
accessibility should be measured as the time that is needed to reach an area from a starting point.
Therefore accessibility analyses are assigned to the group of facility location problems.10
 It is also possible to compute the reachable region originating from several starting points. The graph
represents the street network. Therefore a directed graph is used for the calculations. Hence an
accessibility analysis comprises the investigation of the accessibility of a region from one starting

8 BARTELME, 2005, p. 75; FISCHER M. M., 2003, p. 2; SEDGEWICK, 1992, pp. 476, 481, 513-533; DOMSCHKE,
1981, p. 6
9 BILL, 2010, pp. 479-483
10 BILL, 2010, p. 481

 5

point or several starting points, optional within certain costs like time, and the presentation of the
result on a map.

A simple accessibility analysis with only two cases is the analysis whether a location is reachable from
others or not (unweighted graph). Figure 2 illustrates such an example. It is possible to reach the
locations A to D by car from each other, because there are road connections between them. But it is
impossible to reach location E by car, because there is no road connection to the other locations due
to the fact that E is situated on an island.

Figure 2: Result of an accessibility analysis of an undirected and unweighted graph. It is possible to reach the locations A
to D from each other over the network, but it is impossible to reach location E.

More difficult, but also more significant, is the calculation and presentation if the graph is connected
with different costs like distance, travel costs or time. In this case the definition of accessibility is
expanded by the factor of costs: accessibility is the existence of a way from node A to node B with a
limited costs (like distance, travel costs or time) within a graph. However, more detailed information
about the graph is needed like length, travel costs or travel duration of all edges within the graph. For
an analysis these costs are added to the edges (weighted graph).
The result of an accessibility analysis with weighted edges can be used to show which locations can
be reached within a certain distance, time or with a certain budget. As shown in figure 3 the result
will also vary depending on the computation method. First of all the costs (as a simple example
distance) are added to the edges, this can also be done already at the construction of the graph
network. Then isodistances (lines that connect all points of the same distance to the starting point)
are drawn. As can be seen in the figure below there are two different methods to compute these
isodistances. The left part of the figure shows the linear distance from location A, where one only has
to draw circles with different radii. This is a very rough but simple approach. On the right side of the
figure the computation of the distance from location A along the road axes can be seen. It is the
more precise but also costlier method.

 6

Figure 3: Result of an accessibility analysis with a directed and weighted graph. The two images show the result of two
different computation methods. On the left hand side the beeline method and on the right hand side the distance along
the road network.

In contrast to the distance, costs like travel time or budget have to be computed for the edges. For
example the length divided by the speed yields the travel time.

An accessibility analysis can be performed by hand as well as by using a computer. The different
possibilities to execute an accessibility analysis are explained in chapter 2.5.

2.4 Emergency services
Emergency services are "public organizations that respond to and deal with emergencies when they
occur."11 For different kinds of emergencies there are different types of emergency services like
police, fire brigades or emergency medical services.
The regulations for response time of emergency services and the organization of emergency services
themselves differ between countries as well as between federal states or provinces. Because of that
the regulations are described for the German state of Baden-Württemberg.

In Baden-Württemberg, and also in Germany generally emergency services are called Authorities and
Organizations with Security Tasks ("Behörden und Organisationen mit Sicherheitsaufgaben" – BOS).
They are divided into police BOS and non-police BOS or into governmental BOS and non-
governmental BOS12, but police and governmental BOS, and non-police and non-governmental BOS,
do not contain the same emergency services. Police BOS cover all kinds of police, the protection of
the constitution and customs; non-police BOS include amongst others all kinds of fire brigades,
emergency medical services, rescue helicopters, the Federal Agency for Technical Relief
("Technisches Hilfswerk" – THW), the Federal Office of Civil Protection and Disaster Assistance
("Bundesamt für Bevölkerungsschutz und Katastrophenhilfe" – BBK) and civil protection.
Governmental BOS contain all BOS which are run by the government, these are all police BOS but

11 OXFORD DICTIONARY, 2017
12 DEUTSCHES BUNDESAMT FÜR BEVÖLKERUNGSSCHUTZ UND KATASTROPHENHILFE, 2005

 7

also the Federal Agency for Technical Relief and the Federal Office of Civil Protection and Disaster
Assistance.
In contrast to emergency services like police, the Protection of the Constitution and ambulances
most members of THW (99% of all THW members) and fire brigades (96 % of all fire fighters) are
volunteers, which means they have to drive to the THW or fire station in case of an emergency
before they can drive with an emergency vehicle to the scene.13 Career fire fighters and members of
the emergency medical services (EMS) are already at their station. This influences the maximum
possible travel time of the emergency services which is explained more detailed in chapter 2.5.

2.5 Response time and its separate phases
In the field of emergency services the travel time is one part of the response time, which consists of
the three phases talk and disposition time, turnout time and travel time.

Reporting time, however it is not part of the response time, is linked to response time because it is
not predictable. Reporting time is defined as the time interval which starts with the incident (e.g. the
outbreak of a fire) and ends when the incident is reported. Talk and disposition time contains the
time interval starting from the begin of the emergency call until the alerting of the emergency
services. The time interval between alerting and turnout of the emergency services is called turnout
time. Finally the last phase of the response time is called travel time and is defined as the duration of
travelling from the station to the incident. Often there is also a differentiation between response
time 1 and response time 2. In this case response time 1 defines the response time for the first unit
and response time 2 the response time for succeeding units.14 The duration of each phase varies
between different emergency services and defining organizations. An overview of the different
phases of the response time can be seen in figure 4.

Based on the results of a German study called "Entwicklung eines Systems zur Optimierten Rettung,
Brandbekämpfung mit Integrierter Technischen Hilfeleistung" (Development of a system to optimize
rescue, fire fighting with the use of integrated technical assistance – ORBIT) in 1978 organizations like
the Arbeitsgemeinschaft der Leiter der Berufsfeuerwehren (Working Group of the Chiefs of Career
Fire Brigades – AGBF) or Landesfeuerwehrverbände (State Fire Brigade Associations – LFV) defined
the maximum durations of the phases in case of a fire. This study was done by Porsche AG and
WIBERA Wirtschaftsberatung AG on behalf of the German Federal Ministry of Education and
Research to identify how long a human being is able to survive in a fire. For that the standard
incident "critical apartment fire in an upper floor" was analyzed. The result of this study was that the
time limit for start of a successful reanimation of a person is 17 minutes after the start of a fire.15
Some experts and other studies questioned the results of the ORBIT study and also the response
times derived from it, because it takes almost only career fire brigades into account, building
materials and construction methods have changed and the definition of reporting time and the time
for rescue operations are set arbitrarily. Moreover a new study discovered that they are too short.16
However the results are still used to define the response time as a planning and quality characteristic
in Germany today (e.g. References to the capability of the fire brigades in Baden-Württemberg).17

13 DEUTSCHES BUNDESMINISTERIUM DES INNERN, 2017; THW
14 LANDESFEUERWEHRVERBAND BADEN-WÜRTTEMBERG, 2008, pp. 15-18
15 PORSCHE AG, 1978, pp. 23-24
16 LINDEMANN, 2011; FISCHER C. , 2013; WIKIPEDIA: HILFSFRIST, 2017
17 LANDESFEUERWEHRVERBAND BADEN-WÜRTTEMBERG, 2008, p. 7

 8

The State Fire Brigade Association of Baden-Württemberg defines the time interval for the reporting
time 1 in case of a fire as 2 minutes, further 2 minutes are estimated for talk and disposition time,
and for turnout time and travel together time 10 minutes are scheduled. The sum of all these time
intervals is 14 minutes. This means 3 minutes are left for search and rescue of people to finally meet
the 17 minutes mentioned previously.17 But these 3 minutes for search and rescue, also called time
for investigation and time until the first actions become effective, are not part of the response time,
because the response time ends with arrival at the scene. Five minutes after the first unit succeeding
units have to arrive at the scene.
As already mentioned, the times for each of the phases differ between different regulations and
guidelines. For example the AGBF calculates 3.5 minutes for the reporting time 1, 1.5 minutes for the
talk and disposition, and 8 minutes for turnout time and travel time together. In this case 4 minutes
are remaining for search and rescue of people. Succeeding units have to be at the scene no later than
five minutes after the first unit.18 The different phases of the response time and their duration
according to the AGBF guideline can be seen on the timeline in figure 4.

Figure 4: Phases of an emergency: reporting time, talk and disposition time, turnout and travel time and the time for
investigation and time until the first actions become effective. Only the phases talk and disposition time, turnout and
travel time belong to the response time.19

Moreover the combined time for turnout and travel can be split into 1.5 or 4 minutes for turnout
time (depending on career fire fighter or members of emergency medical services, which are already
at the fire station, and volunteer fire fighters, which have to drive to the fire station first in case of an
emergency) and 6.5 or 4 minutes for travel time (in each case 8 minutes minus 1.5 minute respective
4 minutes).20

There are also response times for technical assistance, which are oriented towards the response time
for EMS. Both, an ambulance and the first unit in case of technical assistance should be at the scene
at least 10 minutes after the alarm. Succeeding units have to arrive at most five minutes later. For
special vehicles own response times are defined, depending on the type of vehicle.21

In addition to the response time there are also guidelines about functional strength at the scene and
degree of achievement of the response time.22
With the help of an accessibility analysis it is possible to determine the region which is reachable

18 ARBEITSGEMEINSCHAFT DER LEITER DER BERUFSFEUERWEHREN, 2015, p. 3
19 PREVENT ING, 2017
20 PLATTNER, 2003; STADT KARLSRUHE BRANDDIREKTION, 2006, p. 42
21 LANDESFEUERWEHRVERBAND BADEN-WÜRTTEMBERG, 2008, pp. 17, 22-24
22 ARBEITSGEMEINSCHAFT DER LEITER DER BERUFSFEUERWEHREN, 2015, p. 1

 9

within the required travel time from one or several stations, if influences of traffic situation and
weather conditions are neglected.

2.6 Isochrones
The word isochrone is derived from the Greek iso (ἴσο) = equal and chronos (χρόνος) = time. This
means isochrones are isolines which connect all points that can be reached within a certain time
interval from a defined central point or from which the defined point can be reached in a certain
time interval. It is also possible to define several central points however the determination of the
travelling duration to a specific central point can be difficult or impossible then. Isochrone maps with
one central point are called monocentric isochrone maps, with several starting points they are called
polycentric isochrone maps. The extent of the isochrones differ in dependency on the used mode of
transportation (airplane, public transport, car, truck, bicycle, pedestrian, ...) and the computation
method (shortest way, fastest route, assumption of no traffic, current traffic conditions, ...).23 But "all
travel time figures are at best approximate of course. In practice they will vary with conditions of the
route, vehicle, weather, the time of day, and so on."24 Beside isochrones the area reachable within a
defined time interval can also be shown by the use of polygons to make the map easier to read.
Hake, Grünreich and Meng recommend to use at most 8 to 10 different time intervals in one map.25

Based on a transportation network like OSM a shortest path tree (SPT) has to be computed to get the
travel time from a starting point to all surrounding points. Therefore algorithms like Dijkstra or A* are
used.26 Isochrones are the result of an interpolation between measurement points. There are
different interpolation methods, some of them are listed on the OSM Wiki webpage for isochrones
(http://wiki.openstreetmap.org/wiki/Isochrone).
Generalization of isochrones can be done through selection of individual isochrones (increase of time
interval between two isochrones) or simplification of the isochrones themselves. While doing that,
care has to be taken to retain or stress important characteristics like influence of the relief or road
network.27

2.7 Open source
Open source is a model for developing and offering not just free but also unrestricted products of
different kinds such as data, knowledge or software. This includes the abstinence of "restrictions on
copying, redistribution, understanding and modification."28 Open source software is the most
common known open source product, but it is also used in many other fields. Several of them can be
seen in figure 5. Examples for open source products are Linux, OpenStreetMap and Wikipedia.

23 WITT, 1970, pp. 344-346; GORKI & PAPE, 1987, pp. 322-324
24 MUEHRCKE, 1980
25 HAKE, GRÜNREICH, & MENG, 2002
26 OPENSTREETMAP WIKI: ISOCHRONE, 2017
27 WITT, 1970, pp. 344-346
28 STALLMAN, 1986, p. 8

 10

Figure 5: Various kinds of Open source.29

There are subtle differences between open source and free software, but these are not relevant for
this work.30

2.8 OpenStreetMap
OpenStreetMap is a project to collect free geodata and create a free and open source map of the
world. It was founded in 2004 by Steve Coast in the United Kingdom.

The OSM project is comparable to Wikipedia. Everybody can
contribute and there are no rules how something has to be drawn
and in which level of detail (LOD). However a registration is
necessary for mapping (adding something to the OSM data) and in
the course of time also some arrangements have evolved for
structuring the map objects. New data is added through GPS
tracking, mapping on the basis of satellite images released for this
purpose, local knowledge or import of geodata released for this
purpose (like Corine Land Cover or TIGER data).31

OSM is still under active development. The number of contributors
(called mapper in OSM) and their additions to the map
respectively their changes on the map has been increasing since the start of the project.

OpenStreetMap uses a special data model to store the raw data in a common database and for an
OpenStreetMap specific type of XML data format, the OSM-XML data format.

This data model offers the three different object types node, way and relation. An anomaly of this
data model is the absence of a polygon object type. Instead of polygons the OSM data model uses
closed ways.
Nodes are used to display Points of interest (POIs) or other objects that can be represented by a

29 WIKIPEDIA: OPEN SOURCE, 2017
30 SYDEKUM, 2013
31 RAMM & TOPF, OpenStreetMap - Die freie Weltkarte nutzen und mitgestalten, 2010, pp. 3-9

Figure 6: Logo of OpenStreetMap.

 11

point. Moreover they can be connected through ways and therefore be part of linear or areal objects
like streets or lakes. Ways represent linear objects like fences, rivers or streets or polygons. Relations
offer the possibility to add connections between different objects, for instance to define several ways
as part of a public transport route, river or street.
For precise description of an object various attributes can be added. These attributes are called tags.
Each tag consists of a key and a value, often written in the form key = value. Figure 7 shows an
example of several tags in Ettlingen, Germany. The number of tags for one object is not limited. As
mentioned before polygons are modeled by closed ways with area-specific tags. Each object (no
matter whether node, way or relation) is identifiable by a unique identifier (ID). Apart from this ID
each object contains an arbitrary number of attributes, administrative information (last change time,
user name, version, ...) and additional object specific information. In case of nodes these specific
information are their coordinates in the World Geodetic System 1984 (latitude and longitude). For
ways these specific information means an ordered list of the connected nodes and for relations an
ordered list of members (nodes, ways and relations) and their role within the relation.32

Figure 7: Example of several key-value pairs used in OpenStreetMap.33

Out of this raw data maps can be rendered. On the official website four different map styles can be
found, but none of them displays all of the information that OSM offers. It is also possible to
download the raw data to use it for one's own maps.31 There are already various mashups that use
OSM data for example to display a map or navigate. A comprehensive list of them can be found at
the OSM Wiki (https://wiki.openstreetmap.org/wiki/List_of_OSM-based_services).

The OSM-XML data format is used to exchange OSM data and has the extension .osm. Figure 8 shows
an example of an OSM-XML file. The <osm></osm> element covers the complete content
consisting of an optional bounding box element <bounds /> and a list of OSM objects. The OSM
objects are ordered according to the object type; first the nodes, then the ways and finally the
relations.32

OSM uses the Open Data Commons Open Database License (ODbL) for its data. This means data have
to be shared with the same rights as the original data had, moreover OSM has to be mentioned as

32 RAMM & TOPF, OpenStreetMap - Die freie Weltkarte nutzen und mitgestalten, 2010, pp. 55-61
33 RAMM, OpenStreetMap Die freie WikiWeltkarte Übersicht – Chancen – Grenzen, 2011, p. 29

 12

the source. The exact license can be found at the webpage
https://opendatacommons.org/licenses/odbl.34
In contrast to other free-of-charge map providers, like GoogleMaps it is possible to get and use the
raw data as well as the maps without paying any fee or asking for permission.

The OpenStreetMap Foundation (OSMF) supports and represents the project for example in license
questions. OSMF also takes care of the servers and hosts the official OSM website
www.openstreetmap.com.

Figure 8: Example of an OSM-XML file which contains a node, a way and a relation.

2.9 GeoJSON
"GeoJSON is a geospatial data interchange format based on JavaScript Object Notation (JSON). It
defines several types of JSON objects and the manner in which they are combined to represent data
about geographic features, their properties, and their spatial extents."35 GeoJSON files use the file
extension geojson and are used to present geodata in web applications.
A first specification of GeoJSON was published in 2008. In August 2016 this specification was replaced

34 OPENSTREETMAP: COPYRIGHT AND LICENSE
35 BUTLER, DALY, DOYLE, GILLIES, HAGEN, & SCHAUB, 2016, p. 1

 13

by the standard specification RFC 7946 developed by the GeoJSON format working group. The
GeoJSON standard is an open standard format.

It is possible to store the geometry types Point, LineString (Line), Polygon, MultiPoint, MultiLineString
(Line), MultiPolygon and GeometryCollection in GeoJSON.36 In the RFC 7946 the geometry types are
divided into "single type Geometry objects (Point, LineString, and Polygon) and homogeneously
typed multipart Geometry objects (MultiPoint, MultiLineString, and MultiPolygon)" as well as
heterogeneously typed multipart Geometry objects (GeometryCollection). Whereas single type
Geometry objects and homogeneously typed multipart Geometry objects can only contain
geometries of the same geometry type, it is possible to union different geometry types into a
GeometryCollection.37 Additional information to the geometry objects can also be stored. This
additional information is called properties. Geometry object and properties together are combined
to so-called Feature objects. A FeatureCollection includes several Feature objects. The geometry is
saved in the World Geodetic System 1984 (WGS84) and decimal degree notation.

Figure 9 shows an example of a GeoJSON file which contains a Point, a LineString and a Polygon
geometry each time with associated properties in three different Feature objects. All Feature objects
are contained in a FeatureCollection.38 The standard also defines some additional attributes like
identifier ("id": "f1") and bounding box ("bbox": [100.0, 0.0, 105.0, 1.0]). In
addition to that it is also possible to define custom attributes (so-called foreign members), but these
reduce the interoperability of the GeoJSON files.

The coordinates attribute consists out of two or three elements; longitude, latitude and optionally
the elevation relating to the WGS84 reference ellipsoid in meters. There is no limit of decimals of the
coordinates, but the more precise the coordinates the larger the file size. Normally six decimals are
enough. This corresponds to about 10 centimeters.

Polygons can have holes. In this case the first sequence of coordinates defines the exterior line and
all other coordinates sets define the interior lines (holes).39

36 GEOJSON WORKING GROUP; BUTLER, DALY, DOYLE, GILLIES, HAGEN, & SCHAUB, 2016, pp. 3, 4
37 BUTLER, DALY, DOYLE, GILLIES, HAGEN, & SCHAUB, 2016, p. 9
38 BUTLER, DALY, DOYLE, GILLIES, HAGEN, & SCHAUB, 2016, pp. 1, 3-6
39 BUTLER, DALY, DOYLE, GILLIES, HAGEN, & SCHAUB, 2016, pp. 9, 12, 18

 14

Figure 9: Code example of a GeoJSON file which contains a Point, a LineString and a Polygon geometry.38

 15

3 The suitability of OpenStreetMap data for accessibility analysis
OpenStreetMap offers free geodata for the whole world. The quality of the data varies, depending
among other factors on the location in the world. In 2010 Frederik Ramm and Jochen Topf
determined in their book about OpenStreetMap that many cities worldwide are mapped in more
detail in OSM than in maps of Google, Yahoo or Microsoft and are more up to date than printed city
maps. Also OSM offers better geodata for developing countries than anybody else is able to
provide.40 But on the other hand especially in rural regions the OSM data has to be improved. The
German OpenStreetMap community came to the same conclusion.41

In order to evaluate OSM for accessibility analyses, it is required to define which features are
necessary to perform this kind of calculation.
An exhaustive road network is of primary importance for an accessibility analysis. This network
should contain information about speed limits, turn restrictions and vehicle dimension limits as well
as vehicle weight restrictions. Moreover house polygons or at least polygons for built-up areas are
necessary for interpreting the result and to check if all houses are reachable in the mandatory
response time. In addition to that the borders of districts, municipalities and counties are required to
inspect the coverage of the alarm response areas of each station. Knowing the locations of existing
stations is also beneficial, but these should be known by the local responsible persons that perform
the accessibility analysis. Obviously currency and accuracy of the information are as important as the
completeness.

Accessibility analysis needs large-scale maps with a map scale of about 1:50,000. This correspondents
to zoom level 14 (1:35,000) in online maps like OpenStreetMap, Google Maps or Here Maps.42 To
evaluate the quality of OpenStreetMap, its data it is compared with other online map providers. This
can easily be done by the use of the map compare tool of Geofabrik (http://tools.geofabrik.de/mc).
With this tool it is able to compare up to 8 maps or satellite images to each other. Some of the
selectable options are just different map styles of the same data basis. Therefore OpenStreetMap is
only compared with Google Maps and HERE maps in this work. Also two different places are chosen
to do so. On the one hand the German city of Karlsruhe and on the other hand Karamay in China.

Karlsruhe is a city with around 300,000 inhabitants which is mapped very extensively.43 A city with a
comparable number of inhabitants in China is Karamay City in the North East of China close to
Ürümqi. Karamay City has more than 400,000 inhabitants, but because it also has an area of over
7,700 km² only the district Karamay (circa 260.000 inhabitants) is chosen to make a comparison.44
OSM depends highly on volunteers to map their surrounding area. Because freedom in China is
limited mapping is made difficult. Therefore it can be assumed that this city is not well mapped.

40 RAMM & TOPF, OpenStreetMap - Die freie Weltkarte nutzen und mitgestalten, 2010, pp. 3, Color Plate 13
41 OPENSTREETMAP GERMANY
42 OPENSTREETMAP WIKI: ZOOM LEVELS, 2016
43 DESTATIS, 2016
44 TJCN, 2016

 16

Figure 10: Map section of Karlsruhe of OpenStreetMap in zoom level 14.45

Figure 10 shows a map section of OpenStreetMap at the end of march 2017 of Karlsruhe in zoom
level 14. As can be seen the road network is very dense. Also small ways in forests or parks are
mapped together with details about the road category. Moreover the house polygons are included
and a few street names are visible. By increasing the zoom level more street names, points of
interest (POIs) and house numbers become visible.

Figure 11: Map comparison of Karlsruhe in zoom level 14. The left map is OpenStreetMap, the map in the middle is
Google Maps and the right map is HERE Maps.45

A map comparison of OpenStreetMap with maps of Google and HERE can be seen in figure 11. The
result of the comparison is that the quality of the OpenStreetMap map of Karlsruhe is comparably
good as the map of Google Maps and significantly better than the HERE map.
There are far more details like house polygons or sports grounds than in the maps of Google and

45 GEOFABRIK, 2016

 17

HERE. The path network is more comprehensive. Altogether the OpenStreetMap map section shows
the most information of the three map sections. But Google Maps and HERE Maps showing more
street names at this zoom level.

The quality of the map section of Karamay in contrast to the one of Karlsruhe is very poor. Only the
main roads and a few minor roads are present in the OpenStreetMap map as figure 12 shows. There
are just a few house polygons in the center of Karamay. After increasing the map scale only few
additional information appears.

Figure 12: Map section of Karamay of OpenStreetMap in zoom level 14.45

A comparison of the map of OpenStreetMap with Google Maps and HERE Maps is visible in figure 13.
The quality of Google Maps is significantly better, because it contains not only more roads but also
more points of interest. In contrast to that the map of HERE contains nearly no information.

Figure 13: Map comparison of Karamay in zoom level 14.45

 18

As these two examples show, OpenStreetMap data is comparable to Google Maps and better than
HERE Maps. In some parts the quality is even better than maps of Google. But the quality of
OpenStreetMap is not consistent in all areas, sometimes the map is only rudimentary as the example
of Karamay shows. In this investigated case Google Maps offers more information, but the OSM map
quality is by far better than the HERE map. It has to be noted that not all available information is
displayed in the maps at all or in individual zoom levels.

OpenStreetMap has the capability to be more up to date than other map providers, but the currency
depends on the volunteers. Everybody can update the OSM data, changes are already visible a few
minutes after uploading them. New roads or houses as well as closed roads are added to
OpenStreetMap faster than to the others, because the number of contributors is higher. Although
the risk of misuse is lager if everybody is allowed to change whatever they want, errors are corrected
faster. Users can be blocked if they deliberately add wrong information to OSM several times after
they have been cautioned. The knowledge about the local conditions of the local mapper provides
additional important information.
Another advantage of using OpenStreetMap data is that if the available data for the desired area is
not good enough the user is able to improve it. Therefore the quality of OpenStreetMap is increasing
every day. Contributing is not that easy for Google Maps or HERE Maps.

Comparisons indeed are only suitable to get a first overview of the suitability of OSM data, because
even Google Maps or HERE Maps do not contain all information worldwide. Therefore the fulfillment
of the requirements earlier defined in this chapter are reviewed in more detail.

A recently published study of Christopher Barrington-Leigh and Adam Millard-Ball investigated the
completeness of OSM road network with the two different methods visual assessment of 45 points
per country and saturation of contributions based on the roads already mapped in OSM itself.46 They
identified that the road network is "globally around 83% complete, and more than 40% of countries -
including several in the developing world - have a fully mapped street network"47 in January 2016 by
using the visual assessment method48 and 97% by using the saturation method. 49 In addition to that
77 of the 185 investigated countries "are more than 95% complete."49 But countries like "Kiribati,
Afghanistan, Egypt and China are all less than one-third complete."50 The completeness of the road
network in OSM per country is visible at figure 14.

46 BARRINGTON-LEIGH & MILLARD-BALL, 2017, pp. 4-8
47 BARRINGTON-LEIGH & MILLARD-BALL, 2017, p. 1
48 BARRINGTON-LEIGH & MILLARD-BALL, 2017, p. 9
49 BARRINGTON-LEIGH & MILLARD-BALL, 2017, p. 10
50 BARRINGTON-LEIGH & MILLARD-BALL, 2017, p. 11

 19

Figure 14: Completeness of the OpenStreetMap road network per country in January 2016.51

Information about speed limits, turn restrictions and vehicle dimension limits as well as vehicle
weight restrictions are not completely added to OSM at the moment. However a non existing
restriction tag not always indicates missing information, because if no tag is added the default values
of OSM for the particular road type is used (in fact in this case for example maxspeed=none should
be used). Figure 15 shows a screenshot from http://product.itoworld.com/map/124 where all tagged
speed limits worldwide can be seen. At http://maxheight.bplaced.net/overpass/map.html a map that
visualizes where vehicle dimensions are defined and where they are missing (only height restrictions)
can be found.
The completeness of speed limits, turn restrictions, and weight restrictions is not mandatory,
because emergency vehicles are exempt of speed limits and turn restrictions as long as no other road
user is endangered or forced. Emergency vehicles are also often exempt of weight restrictions if the
weight restrictions are declared to protect a building that will be damaged by frequent use of too
heavy vehicles. On the contrary restrictions of the vehicle dimensions cannot be ignored, because
narrow passages are impassable with larger dimensions.52

At the moment there are no studies that investigate this topic. It can be assumed that the
completeness of vehicle dimension restrictions decrease from urban areas to rural areas, but also
from the city center to the periphery. In addition to that the completeness in European countries is
probably higher than for instance in African countries.

51 BARRINGTON-LEIGH & MILLARD-BALL, 2017, p. 12
52 HÄRDI, 2017

 20

Figure 15: Set speed limit values in OSM. Clearly visible is the big difference in completeness between Europe and the
other continents.53

Most studies that have analyzed the completeness of the data only investigated the road network.
Studies which tested the completeness of house polygons compared them with official maps like
ATKIS Basis-DLM, cadastral map, basemap.at, OS Street View, the topographic landscape model of
swisstopo or the official vector cartography of the Milan Municipality. These comparisons indicate a
much poorer completeness of house polygons in OpenStreetMap than in official maps. However the
coverage is increasing. Like with all data, the completeness is high in city centers and decrease in
direction periphery and rural areas. All currently available studies only investigate the completeness
of house polygons limited to cities or at most one country. Some of them, and their results, are
defined below.
Hahmann, Hecht, and Kunze used four different approaches to investigate the completeness of
house polygons in the German states of North Rhine-Westphalia and Saxony in November 2011. In
their study they detected an average coverage of circa 15% with values of the different examinations
between 10.1% and 33.3%. An update of their study in the year 2012 shows an increase of the
coverage to 23% and of the values for the different examinations to 14.4% respective 45.9%. This
corresponds to an increase of 8% in a year. If this rate of increase will be continuous all houses will be
added by 2021. In addition to that they refer to the study "OpenStreetMap in 3D – Detailed Insights
on the Current Situation in Germany" of Marcus Götz and Alexander Zipf in 2013 in which it was
found that 30 % of all main buildings are already mapped in OpenStreetMap and that this number is
increasing by 1% each month.54
An Austrian study of Thomas Konrad discovered that OpenStreetMap in 2016 already contained
more than 85% of all houses in Austria. In addition to that he developed an online map to compare
the houses included in OSM against the houses contained in basemap.at. This map can be found at
https://osm-austria-building-coverage.thomaskonrad.at/map.55
In 2015 the completeness of houses in the three British cities Leeds, London, and Sheffield was

53 ITO MAP, 2017
54 HECHT, KUNZE, & HAHMANN, Zur Vollständigkeit des Gebäudedatenbestandes von OpenStreetMap, 2014,
pp. 44, 59, 74, 75, 77, 78, 80; GÖTZ & ZIPF, 2012, p. 3
55 KONRAD, 2017

 21

investigated by Katerina Chistopoulou, Claire Ellul and Clarire Fram. They compared the houses
contained in OSM with the houses contained in OS Street View, the official geodata maintained by
the British government. Thereby they discovered that the houses in Sheffield were covered to 75%,
while in London only 33% and in Leeds 30% were mapped.56
In 2015 Lorenz Hurni, Ionut Iosifescu and Fabian Müller published a study in which they investigated
the quality of buildings in OSM all over Switzerland called "Assessment and Visualization of OSM
Building Footprint Quality". They discovered that OSM contains more buildings in the cantons of
Basel-Stadt and Basel-Landschaft.57 Figure 16 illustrates their results.
An Italian study of 2016 investigated the city of Milan and discovered that the official data has a 9%
larger area than OSM data.58
In the absence of house polygons it is possible to define them as residential areas. 4,161,809 nodes,
polygons, and relations are tagged as landuse=residential, which defines them as residential
built-up areas.59

Figure 16: Completeness of OSM building data in comparison to official data in Switzerland. The darker the color the
completer the buildings.60

OpenStreetMap contains a lot of borders on different administration levels, but not every
administration level exists in each country. Not all of them are needed for investigation of the
accessible region of an individual station but they are needed to make boundaries comparable
between different countries.

56 CHISTOPOULOU, ELLUL, & FRAM, 2015, p. 2
57 HURNI, IOSIFESCU, & MÜLLER, 2015, p. 4
58 BROVELLI, MINGHINI, MOLINARI, & ZAMBONI, 2016
59 OPENSTREETMAP WIKI: RESIDENTIAL, 2016
60 HURNI, IOSIFESCU, & MÜLLER, 2015, p. 7

 22

Best fitted would be application areas like they are tagged with fire_boundary=yes for a special
map (http://karta01.ru). Indeed this tag is not often used, only 374 objects make use of this tag.61
Instead of application area borders also the administrative borders can be used, because they are
often congruent with the application area borders are of the most importance. The administrative
levels 6 and 8 which represent counties or independent cities respective cities or villages. Overall
there are 1,440,343 objects tagged as boundary in OpenStreetMap. A matching of the administrative
levels of OpenStreetMap to the country-specific boundary types can be found at OpenStreetMap
Wiki.62 The sources of borders are often official entities. Which administrative boundaries are already
mapped in OpenStreetMap can be seen at the website of Walter Nordmann (https://wambachers-
osm.website/boundaries). In most of the European countries the borders are mapped completely
like for instance in Germany or Great Britain, but in other parts of the world often only borders of
counties are mapped.63 An overview of the finest grained mapped administrative boundaries level
worldwide at the 8 July 2017 can be seen in figure 17. In case of missing data it can be assumed that
the local authorities should be able to identify their application area.

Figure 17: Finest mapped administrative boundary level worldwide at the 8 July 2017. This includes also the boundaries
of the territorial waters.

The location of all fire stations added to OpenStreetMap can be seen at http://openfiremap.org.
Aside from Austria , Germany, and Luxembourg, where many fire stations are mapped, information
about fire stations is just in some regions (for instance Canada, Switzerland or the United States) or
here and there available (for example Argentina, Australia or France). In the most countries fire
stations are only mapped sparsely. Fire stations are mapped with the tag
amenity=fire_station. At the time of writing 52,691 nodes, 37,548 polygons, and 300
relations are tagged as fire station worldwide. This would correspond to 90,539 fire stations
worldwide, which is a very low value. Furthermore some fire stations are mapped as a node as well
as a polygon.64
A special map for EMS does not exist, but there is also a statistic how often this tag is used. The tag

61 OPENSTREETMAP WIKI: FIRE BOUNDARY, 2016
62 OPENSTREETMAP WIKI: BORDER, 2017
63 WIKIPEDIA: CITY BOUNDARIES OF GERMANY IN OSM, 2016; OPENSTREETMAP WIKI: CITY BOUNDARIES OF
GREAT BRITAIN IN OSM, 2017
64 OPENSTREETMAP WIKI: FIRE STATIONS, 2016

 23

emergency=ambulance_station is used to tag ambulance stations. But 145 objects are
tagged with amenity=ambulance_station instead.
Worldwide only 5,272 objects are tagged correctly as ambulance station (2,331 as node, 2,902 as
polygon, and 39 as relation). Together with the wrongly tagged objects this equates to 5,417 mapped
ambulance stations.65

A study of Mordechai Haklay, Sofia Basiouka, Vyron Antoniou, and Aamer Ather in 2010

demonstrated that the positional accuracy of OSM data increases if there are more contributors.
Whereas " the first five contributors to an area seem to provide the biggest contribution in terms of
positional accuracy improvement." 66 They found out that "the positional accuracy of OSM is high"67,
more than 80% of the roads mapped in OSM are at the identical position as in official data (Ordnance
Survey Meridian 2).67 Crossings are mapped with an positional accuracy below 6m if there are more
than 15 contributors per square kilometer.66 All in all "the quality of OSM data is comparable to
traditional geographical datasets that are maintained by national mapping agencies and commercial
providers."68
These results are confirmed by other studies. Ina Ludwig, Angi Voss, and Maike Krause-Traudes
discovered in their study "A Comparison of the Street Networks of Navteq and OSM in Germany" that
"73% of the OSM street objects in Germany are within a distance of 5m, 21% between 5m and 10m
and 6% between 10m and 30m away from their Navteq partner."69 According to Christof Amelunxen,
who compared the house numbers in OSM with data of surveying offices, OSM house numbers have
a medium positional error of only 11m, whereas house numbers in Google Maps have a medium
positional error of 32m.70
As already described new mapped objects are available immediately in OSM data, whereas Google
Maps is updated daily and official maps several years.71

As described in this chapter OpenStreetMap data is not complete in every field, but the level of
completeness is increasing, and the quality of OpenStreetMap data is suitable to perform
accessibility analyses.

65 OPENSTREETMAP WIKI: AMBULANCE STATIONS, 2016
66 HAKLAY, BASIOUKA, ANTONIOU, & ATHER, 2010, p. 321
67 HAKLAY, BASIOUKA, ANTONIOU, & ATHER, 2010, p. 318
68 HAKLAY, BASIOUKA, ANTONIOU, & ATHER, 2010, pp. 315-316
69 LUDWIG, VOSS, & KRAUSE-TRAUDES, 2011, p. 14
70 AMELUNXEN, 2010, pp. 2-3
71 WIKIPEDIA:MAP SERVICE COMPARISON, 2017; HECHT, KUNZE, & HAHMANN, Measuring Completeness of
Building Footprints in OpenStreetMap over Space and Time, 2013, p. 1072

 24

4 Algorithms

4.1 Routing algorithms
There are several routing services that differ in flexibility and velocity. Therefore it is important to
know whether the routing for a project should be fast or flexible to decide which of the existing
routing services should be used. The speed or flexibility of a routing service depends on the used
routing algorithm. Three important routing algorithms are described in the following chapters.

4.1.1 Dijkstra algorithm
The Dijkstra algorithm is a simple algorithm that computes the shortest path between two nodes in
weighted graphs. All kinds of weighted graphs are possible, as long they do not use negative
weightings. Distance, time, travel cost or any other measurable values can be set as weight. This
algorithm can be used for directed graphs as well as for undirected graphs.

Edsger Wybe Dijkstra developed this algorithm in 1956 to demonstrate the power of a new computer
called ARMAC (Automatische Rekenmachine MAthematische Centrum/ Automatic Calculator
Mathematical Centre) in a comprehensive form so that all people are able to understand the
problem and the answer. Therefore he developed an algorithm that finds the shortest path between
two of 64 selected Dutch cities on base of a reduced roadmap of the Netherlands. The algorithm was
published in 1959 in the article "A Note on Two Problems in Connexion with Graphs" in the German
journal "Numerische Mathematik".72

The Dijkstra algorithm groups the nodes in the three types A, B, and C. Type A contains all nodes to
which the shortest path from the starting location is known. All nodes that are connected to at least
one node of type A are included in type B. Each node of type B can only have a single path (the
current shortest path) from the start location to it. The distance of this path is simultaneously the
distance of the respective node from the starting location. Finally type C contains all other nodes. At
the beginning all nodes are of type C.
Similarly the edges are also grouped in three types (I, II, and III). Type I comprises all edges that are
part of the shortest paths from the starting location to the nodes of type A. Edges between nodes of
type A and nodes of type B are included in type II (actual shortest paths). All other edges are part of
type III. All edges are of type III at the beginning.

First of all the node of the starting location is shifted to type A. A value of 0 is allocated to this node.
After that the following two steps are repeated until the destination is reached or the complete
graph has been investigated (in case of the destination is not part of the same graph as the starting
location).
In the first step all edges that connect nodes of type A with nodes of type B or C are investigated. If a
edge connects nodes of type A and B, it is checked whether the newly found path to the node of type
B is shorter than the already existing current shortest path. In this case the new path to this node
replaces the current shortest path. When an investigated node is part of type C it is shifted to type B
and the path to it is computed. Moreover the path added to type II.
After that the node with the shortest distance to the starting location is shifted to type A. Also the

72 DIJKSTRA, An Interview With Edsger W. Dijkstra, 2001

 25

corresponding edge is moved to type I.73 Consequently always the shortest path is treated and
thereby it is also guaranteed that the shortest path to every node is found.

Because the Dijkstra algorithm is always looking for the shortest path, it searches radially into all
directions, beginning from the starting point. It always finds a solution if there is one. Dijkstra is a
flexible routing algorithm and therefore not as fast as Contraction Hierarchies.74 The duration of a
route computation increases with the length of the route.75

4.1.2 A* algorithm
A* is an improvement of the Dijkstra algorithm and is used in the same way to search the shortest
path in a weighted graph. Like Dijkstra it can only use positive weights. In contrast to Dijkstra, A*
limits the search by taking the direction to the end point into account. Therefore this algorithm is
usually faster than Dijkstra.

The A* algorithm was developed by Peter E. Hart, Nils J. Nilsson and Bertram Raphael in 1968.

A* combines the method of the Dijkstra algorithm (searching for close nodes that can be reached
with as less costs as possible from the starting location) with the method of heuristic algorithms like
Greed Best-First-Search (searching for nodes that are reachable with as little costs as possible from
the destination) to find the node that should be investigated next.
Thereby costs to reach a random node n from the starting location are called g(n), while the
"heuristic estimated cost from vertex n to the goal" is called h(n). 76 A* searches for the lowest sum of
these both values: f(n) = g(n) + h(n). To get a good result a well defined heuristic function is needed.77
The value of the heuristic function always has to be lower than the total costs of all individual paths.
Therefore the beeline is a frequently used heuristic function, because "the shortest road route
between any pair of cities cannot be less than the airline distance between them."78 Because the
heuristic function h(n) is freely selectable there are different versions of the A* algorithm. The higher
the value for the heuristic function the faster the computation, but also the probability that the
shortest path is found decreases. If a value of 0 for the heuristic function is chosen, the A* algorithm
is equivalent to the Dijkstra algorithm. When a high value for the heuristic function is chosen, the A*
algorithm is equivalent to a heuristic algorithm like Greed Best-First-Search.79

A* uses three categories to divide the nodes. These categories are called unknown nodes, open
nodes and closed nodes. At the beginning of the algorithm all nodes are unknown. That means no
path is found to them so far. Open nodes are all nodes to which a path is known, however it is not
certain that it is the shortest path. All open nodes are stored in a list called open list. If the shortest
path to a node is known the node is closed and therefore stored in the closed list. Closed nodes are
not considered during the computation any more.

The algorithm starts by adding the start location to the open list. Then the f values for all adjacent
nodes of the starting node are computed and all selected nodes are added to the open list. Then the
node with the lowest f value is selected. If this point is the destination it is added to the closed list

73 DIJKSTRA, A Note on Two Problems in Connexion with Graphs, 1959, S. 270-271
74 VELDEN, 2014
75 RAMM, Routing-Engines für OpenStreetMap, 2017, p. 28
76 PATEL, 2017
77 PATEL, 2017; HART, NILSSON, & RAPHAEL, 1968, p. 102
78 HART, NILSSON, & RAPHAEL, 1968, p. 101
79 HART, NILSSON, & RAPHAEL, 1968, p. 107

 26

and the algorithm stops. Else the node is added to the closed list and the f values for all adjacent
nodes of that point are computed. Again all selected nodes are added to the open list and the node
with the lowest f value is chosen. But nodes that are already in the closed list are not investigated
any more. Adjacent nodes that are already part of the open list are updated if the new found path is
shorter than the old one. This loop is traversed until the destination is reached.80

4.1.3 Contraction Hierarchies
Contraction Hierarchies (CH) is the fastest algorithm of thethree algorithms presented in this report
to solve a shortest path problem, because by precalculation of the graph it contracts the graph. The
precomputation takes a lot of time (depending on the area), but a single query needs just a few
milliseconds. However this makes Contraction Hierarchies inflexible, because each time an edge is
added, deleted or modified the graph has to be precalculated again. For each routing profile a
separate routing graph has to be precalculated because the routing profiles use different weights for
the edges.81 The compiling time for a route increases with route length, but when using Contraction
Hierarchies this increase is much smaller than with by A* or Dijkstra.82

CH was developed by Robert Geisberger in his diploma thesis "Contraction Hierarchies: Faster and
Simpler Hierarchical Routing in Road Networks" at the University of Karlsruhe (today Karlsruhe
Institute of Technology) in 2008.83

The algorithm is divided into the two sections contraction and queries. Contraction includes all steps
to simplify the graph by contracting it, whereas queries deals with searching for shortest path n
based on the simplified graph.
Contraction is done by preprocessing the graph. Depending on the size of the graph this can last
hours.
All nodes are evaluated by their "importance" and afterwards ordered regarding this importance.
After that from this order a hierarchy is constructed. Less important nodes are "contracted by
removing [...] from the network in such a way that shortest paths in the remaining overlay graph are
preserved."84 This means "paths of the form v, u, w [are replaced] by a shortcut edge v, w [...] if v, u,
w is the only shortest path from v to w."84 Figure 18 illustrates this concept.

Figure 18: A shortcut node can only be added if there is just one possible way between v, u, w. A witness edge "witnesses
that v, u, w is not a shortest path or not the only shortest path."85

The computation method for the importance of a node can be freely defined. "However, this choice
has a huge influence on preprocessing and query performance."86 Therefore the computation of the

80 HART, NILSSON, & RAPHAEL, 1968, p. 102
81 FUNKE, 2017, p. 5; GEISBERGER, 2008, p. 3
82 RAMM, Routing-Engines für OpenStreetMap, 2017, p. 2)
83 GEISBERGER, 2008, p. 1
84 GEISBERGER, 2008, p. 9
85 GEISBERGER, 2008, pp. 13-14

 27

importance value in the original CH algorithm is a "linear combination of several priority terms."86
The definition of these priority terms can be found in the report of Geisberger's diploma thesis.

Shortest path queries are solved by a modified bidirectional Dijkstra algorithm. This is a Dijkstra
algorithm that computes the shortest path by simultaneously searching from the starting location as
well as from the destination.87 It also considers the computed importance of the nodes by preferring
"edges leading to more important nodes in the forward search and edges coming from more
important nodes in the backward search." 88

An improvement of CH is Customizable Contraction Hierarchies (CCH). CCH reduces the major
disadvantage of CH by adding a third section called customization. Contraction is done only for the
graph but not for the weights. These are treated in the customization phase. Queries work similar to
CH. Therefore after changing the weights, for example for a new profile, the complete graph does
not have to be constructed again, just the customization has to be recalculated.89

4.2 Other algorithms
In addition to routing algorithms themselves, further algorithms are needed to create the isochrones
and to do simplifications if necessary.

4.2.1 CONREC algorithm
CONREC is a subroutine developed in 1987 by Paul Bourke to compute isolines to represent three
dimensional information on a two dimensional medium like a map or computer screen. This is also
called contouring. The best known use is for computing contour lines, but it can also be used to
compute other types of isolines like isobars or isochrones. The third dimension in this case is not the
height but the air pressure respective the travel time. In general "some parameter is plotted as a
function of two variables, the longitude and latitude."90 Bourke wrote the subroutine based on a
FORTRAN subroutine written by Dr. M. D. Jones of the Auckland University in New Zealand in 1983.
The original CONREC subroutine is written in BASIC, but it has already been adapted to many other
programming languages like C, C++, C#, Java, and JavaScript. In contrast to other computation-
intensive contouring algorithms CONREC "is easy to implement, very reliable, and does not require
sophisticated programming techniques or high-level mathematics."91 In addition to that CONREC has
no problems with non-square grids and uneven spacing between coordinates.

CONREC just needs the three-dimensional data and a list of contour levels as input. Typically the
contour levels cover the complete range of the investigated parameter for example height, air
pressure or travel time (represented on the z-axis).
At the beginning always four adjacent points are grouped to build rectangles. Then each rectangle is
split along the diagonals into four triangles. At this stage the z coordinates are ignored. The result of
this stage is shown in figure 19a.
Then the coordinates of the center point are computed. The x and y coordinates are interpolated
from the four corner points, the z coordinate is the average of the z coordinates of the corner points.
As a result there are four three-dimensional triangles. Figure 19b shows one of them. These triangles

86 GEISBERGER, 2008, p. 14
87 GEISBERGER, 2008, p. 29
88 GEISBERGER, 2008, p. 3
89 DIBBELT, STRASSER, & WAGNER, 2015, p. 1
90 BOURKE P. , 1987
91 BOURKE P. D., 1987, p. 143

 28

are later used to compute the isolines, by looking for intersections of each triangle with contour
planes that are defined for each isoline level. Along the intersections an isoline segment is drawn as
figure 19c shows.
In addition the triangle can intersect the contour plane just in a single point, with its complete area
or not at all. Figure 20 lists all six possible intersection types between a triangle and a contour plane.
An isoline segment is only drawn in case of a linear intersection (types I to III).
If all intersections between a rectangle and the contour planes have been investigated the algorithm
moves forward to the next rectangle until all rectangles have been investigated. The rectangles are
investigated from top to bottom and from left to right.
After computation CONREC returns a sequence of line segments together with the corresponding
contour levels. This output can be processed by a plotting subroutine to draw the result or other
functions that for example combine the individual contour segments into a single contour for each
isoline level.92 As an example of the result of the isoline computation for the complete data and for
all isoline levels figure 21 shows the result for one rectangle and one isoline level.

Because CONREC only needs access to the four corner points of a rectangle at the same time it is
"suitable for processing large data sets that would exceed the amount of memory available for array
storage."93 It is possible to improve this algorithm, however it gets more complicated and resource
intensive.

92 BOURKE P. D., 1987; BOURKE P. , 1987; NESBITT D. , valhalla/docs/thor, 2017
93 BOURKE P. D., 1987, p. 144

 29

Figure 19: (a) Four adjacent points are grouped to a rectangle (xi, yj), (xi+1, yj), (xi, yj+1), (xi+1, yj+1). Subsequently the
rectangle is further divided into four triangles. (b) After computation of the coordinates of the center points four three-
dimensional triangles can be drawn. (c) For each isochrone level there is a contour plane. Isoline segments are drawn if a
triangle intersects a contour plane.93

Figure 20: All six possible intersection types of a triangle with a contour plane.94

94 BOURKE P. D., 1987, p. 145

 30

Figure 21: Result of the CONREC algorithm for one rectangle and one contour plane.95

4.2.2 Douglas-Peucker algorithm
The Douglas-Peucker or Ramer-Douglas-Peucker algorithm is used for generalization through
polylines simplification. This is done by reducing the number of points in the polyline, more precisely
by selecting characteristic points.

David Douglas and Thomas Peucker developed this algorithm in 1973 based on another algorithm
developed by the German company AEG that was used in their Experimental Cartographic Unit for
printing. Douglas-Peucker was originally coded in FORTRAN IV and ALGOL W.96

The AEG algorithm deletes points if they are closer to a straight line between two points than a
predefined tolerance. Therefore the first point of a polyline is defined as representative point and
connected with "straight lines to subsequent points until one point between the representative point
and the sub-point is further away from the line linking the two than a pre-set tolerance value." 97 If
an investigated point is further away from the straight line than the tolerance, "the point before the
sub-point becomes a new representative point."97 This procedure is repeated until the end of the
polyline is reached.97

In contrast to the AEG algorithm Douglas-Peucker uses the first and the last point of a polyline to
start the calculation and select points.
The first point is called anchor and the last point is called floating point. Anchor and floating point are
connected by a straight line. All points in between are investigated to find the point with the largest
perpendicular distance to the straight line. If the distance between this point and the straight line is
larger than a predefined tolerance the point is set as new floating point, if not the polyline can be
generalized by the straight line. All intermediate floating points are stored. In case the floating point
has moved this procedure is repeated, otherwise the floating point becomes the new anchor and the
last intermediate floating point is set as new current floating point. The generalized polyline consists
of all points that were defined as an anchor.98 Figure 22 illustrates the process of the algorithm with

95 BOURKE P. , 1987
96 DOUGLAS & PEUCKER, 1973, pp. 116-117
97 DOUGLAS & PEUCKER, 1973, p. 116
98 DOUGLAS & PEUCKER, 1973, p. 117

 31

its different steps. In addition to that figure 23 shows the original polyline at the top and below the
generalized lines with the respective tolerance distance in front of them.

Figure 22: Process of the Douglas-Peucker algorithm. Polyline 0 is the original. In the first step (1) both endpoints of the
polyline are connected by a straight line "a" and the point with the largest perpendicular distance "b" to this line is
identified (point c). In the next step (2) point "c" is the new endpoint if the measured distance is larger than the
predefined tolerance. Also the procedure is repeated. Again a new point that lies further away from the straight line as
the tolerance value is identified (3). Finally the lowermost picture shows the final result.99

The name of the algorithm is inspired by the names of two authors of the article "Algorithms for the
reduction of the number of points required to represent a digitized line or its caricature" in The
Canadian Cartographer in 1973. However, because Urs Ramer had published the algorithm a year
before them in Computer Graphics and Image Processing, therefore the algorithm sometimes is also
called Ramer-Douglas-Peucker.100

99 WIKIPEDIA: Douglas-Peucke, 2016
100 RAMER, 1972

 32

Figure 23: Results for the generalization of the polyline on the top with different tolerance values by the use of the
Douglas-Peucker algorithm. The corresponding tolerance value for each result can be seen left of the individual result.101

101 DOUGLAS & PEUCKER, 1973, p. 119

 33

5 State of the art methods of accessibility analysis
There are different methods to define the reachable area around a fire or a rescue station. The
reachable area is the area which contains all the points which can be reached within the travel time
period. Different methods and examples for their implementation are explained in this chapter.

5.1 Circle-/beeline-method
A simple but imprecise approach is the use of circles around the stations. It can be called "circle" or
"beeline method", because the radius of these circles defines the distance an emergency vehicle is
able to cover in a certain period. Figure 24 shows an example of the volunteer fire brigade of
Finnentrop.

To compute the distance for the radius an average velocity for the emergency vehicle and the
duration of the travel time period have to be determined first. The average velocity depends on the
vehicle: car, van or truck. Standard values for trucks with special signs (blue flashing lights and sirens)
are 40 km/h in town and 60 km/h out of town.102 In addition to that the travel time depends on the
location, because in each country or even state or province the time target is different. For example
in Saxony the target is 4 minutes for volunteer fire brigades and 8 minutes for career fire brigades.
They differ because the turnout time of professional fire brigades is 1 minute (they are already at the
fire station) and for volunteer fire brigades it is 5 minutes (they have to drive to the fire station
first).103 By using the formula s = v * t (distance = velocity * time) the radius can be computed. Finally
the location of the stations and the circles around them are drawn into a large-scale map (about
1:50,000).

Figure 24: Definition of the reachable region with the circle or beeline method of Finnentrop in North Rhine-Westphalia
(Germany).104

102 SÄCHSISCHESES STAATSMINISTERIUM DES INNERN, 2005, p. 1171; LANDESFEUERWEHRVERBAND HESSEN,
2015, p. 8
103 SÄCHSISCHESES STAATSMINISTERIUM DES INNERN, 2005, p. 1171
104 NEIS, 2010; FREIWILLIGE FEUERWEHR FINNENTROP, 2010

 34

But this method ignores the street network and the different road categories. Therefore this method
can lead to unrealistic results. Non-reachable areas (e.g. a river without bridges is between an area
and the station or a mountain region which is only reachable by winding roads) will be marked as
reachable within a certain number of minutes. Moreover other regions, which are reachable in time
by using for example a motorway, are marked as not reachable within the period.
An improvement of this method is to cut the circle along insurmountable barriers like rivers, railways,
motorways.105

5.2 Road Axis-Method
The Road Axis-Method leads to polygonal instead of circular areas. It is more resource-intensive to
compute, but yields more precise results. For this method the travel time is calculated along the
roads. This method can be implemented in three different ways.

5.2.1 Manual methods

5.2.1.1 Opisometer method
The first way is an advancement of the beeline-method. With the use of an opisometer (see figure
25) the computed distance is measured along the separate road axes beginning at the fire or rescue
station. The endpoints of all possible routes are marked on a map and are later on connected. The
result is a polygon which represents the reachable area. However this approach still ignores different
road categories.103

Figure 25: Mechanical opisometer in use.106

 5.2.1.2 Test drive method
The second way to get the reachable area are test drives. That means time and distance are
measured either during real emergency drives or during test drives with an ordinary car. For example

105 LANDESFEUERWEHRVERBAND HESSEN, 2015, p. 8
106 WIKIPEDIA: OPISOMETER, 2016

 35

the reachable area which can be reached by using an ordinary car is comparable to the range which
is reachable with a truck with special signs. Just like in the first approach the endpoints are marked
and connected to get the polygon of the reachable area.103 On the one hand, this method delivers
the travel time under real conditions. Moreover it considers the velocity changes because of the
course, the width or the category of the road. Of course test drives are only a snapshot, because they
depend on weather and traffic conditions. To get verifiable values several measurements are needed
to compute the average. On the other hand these kind of measurements are time, cost, and work
intensive, because measurements of emergency drives are not available for all routes. Each possible
route has to be measured in real time, which takes 4 to 8 minutes per route plus the way back to
station, also fuel costs, and other operating costs for the test vehicle will occur. This method works
with just a few measurements, but the more measurements are done, the more precise the result
will be. For example the career fire brigade of Wiesbaden in the German federal state of Hesse has
used this method to generate the isochrones around their fire stations.107

5.2.2 Digital non proprietary methods
In contrast to the approaches mentioned so far this way uses a computer to estimate the reachable
area. With this approach it is also possible to take care of different road categories and the course of
the roads as long as the available data of the road network contains this information and the
software or service used is able to deal with it. In comparison to the test drives this method causes
less costs and is much faster. Figure 26 shows an example from the volunteer fire brigade of
Finnentrop for the use of OpenRouteService (explained in chapter 5.2.2.2).
There are a lot of different software and routing services solutions to do so. For both kinds there are
free or proprietary versions or solutions available (they are described in chapter 2.5.2.3). Moreover
OpenStreetMap offers a worldwide road network on which the accessibility analysis can be
performed.

Software like GIS systems (proprietary ones like ESRI ArcGIS as well as open source ones like QGIS)
have the disadvantage that they have to be installed on the user's computer first, before the user is
able to do an analysis for a limited area. The base map for this area has to be downloaded first and
also stored on the user's computer and the user has to know how to create an accessibility analysis in
this software. Sometimes it is necessary to install extensions of the software before it is feasible to
do an accessibility analysis.

Routing services can be used both installed on the user's computer and as a service in the internet.
While installing a routing service on the user's computer has similar disadvantages as a software, the
use of a service on the internet is easy and uncomplicated for the user. This is because the user just
has to select a few settings, the analysis then will be done automatically and finally the result will be
shown in a map. These settings are to choose a starting point or the starting points, the duration or
distance (sometimes also definition of a number of time step or a step interval is possible) and the
profile (e.g. bicycle, car, truck). This method also allows a much larger coverage up to worldwide
coverage.
Although there are a lot of different routing services, not all of them support isochrones or are open
source.
Several examples of routing services using OpenStreetMap as the base map and offering isochrones
are listed in the OpenStreetMap Wiki (https://wiki.openstreetmap.org/wiki/Isochrone and

107 PITTHAN, 2017

 36

https://wiki.openstreetmap.org/wiki/Routing), but most of them are not open source. There are also
a few routing services which are partially open source. They offer a base open source version with
restricted functionalities and building on this API-keys are needed to use extra functions. Some of
these programs are also developed for a special task and therefore support only a few profiles, use
just the issue-specific part of the OpenStreetMap data or use additional data.108
Examples for routing services which offer isochrones are GraphHopper, Open Source Routing
Machine (OSRM), and Valhalla just to name a few of them. In the following sub chapters a couple of
routing services are examined.

Figure 26: Definition of the reachable region with the polygon or road axis method of Finnentrop in North Rhine-
Westphalia (Germany). The accessibility analysis was done by using OpenRouteService.104

5.2.2.1 GraphHopper Isochrone API
GraphHopper is an open source routing engine that can be used as library, as an online service called
GraphHopper Maps (https://graphhopper.com/maps) or as routing application programming
interface API over HTTP. Besides ordinary routing it offers elevation information, isochrone
computation, geocoding, and navigation. For each of them an extra API is provided. For using the API
credentials are required, these can be requested at https://graphhopper.com/dashboard/#/register.

GraphHopper is able to compute routes very fast and efficiently, is very robust and easily
customizable. It can be used for routing (also indoor), solving vehicle routing problems, vehicle
tracking, traffic simulation, isochrone calculation, and virtual reality games.109 According to Peter
Karich, the author of GraphHopper, GraphHopper "is comparable fast to Google or Bing Maps, but if
you use it in a LAN or directly from within your application it is a lot faster."110

108 OPENSTREETMAP WIKI: ROUTING, 2016; OPENSTREETMAP WIKI: ISOCHRONE, 2017
109 KARICH, GraphHopper an Open Source and Flexible Alternative to Google Maps API, 2013a; KARICH &
LEGRAIN, GraphHopper Routing Engine, 2017
110 KARICH, GraphHopper an Open Source and Flexible Alternative to Google Maps API, 2013a

 37

It was primarily developed by Peter Karich and is still under active development. The first version was
released on 22 July 2013 after more than one year of development.111 Since 2016 GraphHopper is
maintained by the GraphHopper GmbH.112 The recent version 0.9.0 was released on 31 May 2017.113

The source code of GraphHopper is written in Java and available on GitHub
(https://github.com/graphhopper/graphhopper). GraphHopper is designed to be usable on servers,
desktop (Linux, Mac, Windows), and mobile devices (Android, iOS).
The GraphHopper API is customizable. Thus, for example the OpenStreetMap data by default used
for routing and Shuttle Radar Topography Mission (SRTM) data for the elevation can be replaced by
other data sources. GraphHopper provides routing options for bicycle, car, and pedestrian by default,
but it is possible to add new ones.114 The user also can choose between the shortest and the fastest
path. The computation of them can be influenced by adapting the weightings. With this it is also
possible to add weights for other topics like travel cost, elevation or suitability.

Because of the use of Contraction Hierarchies for computation GraphHopper offers extremely fast
route computation (called speed mode). If necessary the routing algorithm can also be changed to
Dijkstra or A* (called flexible mode). Starting with software version 0.9.0 there is also a third mode
called hybrid mode that tries to combine the advantages of both.115

GraphHopper uses the Apache License 2.0. Therefore everyone can use and adapt GraphHopper in
their own projects, it does not matter whether they are free or commercial, open source or closed
source. The complete terms of license can be found at the Apache website
(https://www.apache.org/licenses/LICENSE-2.0).114

Figure 27: Example result of GraphHopper Isochrone API. The inner isochrone is a 5 minutes isochrone and the outer
isochrone is a 10 minutes isochrone. Start point is the station South of the career fire brigade Zurich, Switzerland.116

To calculate isochrones the GraphHopper Isochrone API is needed. Besides defining the starting point
it is possible to choose a time or distance limit and a vehicle (routing option) for the isochrone

111 KARICH, GraphHopper Maps 0.1 – High Performance and Customizable Routing in Java, 2013
112 GRAPHHOPPER, A
113 KARICH, GraphHopper Routing Engine 0.9 Released, 2017
114 KARICH & LEGRAIN, GraphHopper Routing Engine, 2017; OPENSTREETMAP WIKI: GRAPHHOPPER, 2017
115 KARICH, Flexible routing at least 15 times faster, 2017
116 GRAPHHOPPER, B

 38

computation. In addition to that the time or distance steps (called buckets) and the travel direction
(which area is reachable from the starting point in a certain time or distance or from which area the
"starting" point is reachable in a certain time or distance) can be defined. The response is in GeoJSON
format.117 An example of an isochrone computation for the station South of the career fire brigade
Zurich made with GraphHopper Directions API Live Examples
(https://graphhopper.com/api/1/examples/#isochrone) can be seen in figure 27. At the moment the
source code for computing isochrones is not open source but it is planned to be made public, maybe
in the next release.118 The maximum time for which isochrones can be computed depends on the
chosen service package between 20 and 60 minutes, the free package does not include the Isochrone
API.119 The isochrone interval is freely selectable.117

5.2.2.2 openrouteservice.org
The online routing engine OpenRouteService uses open source software, open standards published
by the Open Geospatial Consortium (OGC) and open data (OpenStreetMap) for its calculations. Only
the frontend is open source and can be found on GitHub
(https://github.com/GIScience/openrouteservice). It is available under the MIT license, therefore
everybody is allowed to use this without charge and any restriction (for further detail see the license
at https://opensource.org/licenses/MIT).120 Because of limited resources an API key is needed to
send requests to the hosted backend.121 Registration for this API is possible at
https://developers.openrouteservice.org/portal/register. There is only a free API version with a
limited number of requests. All features are useable via the official OpenRouteService website
www.openrouteservice.org.122

OpenRouteService was developed and is still pursued by several members of the University of
Heidelberg, Germany (Pascal Neis, Alexander Zipf, Maxim Rylov , Lu Liu, Timothy Ellersiek, Hendrik
Leuschner, Amandus Butzer, and Adam Rousell). The first version was released in April 2008.123 On 29
April 2017 the latest version, 4.1, was released.124

It is possible to do routing and geocoding as well as computing isochrones and searching for POIs
nearby. OpenRouteService offers the four services Directions, Geocoding, Isochrones, and Locations.
Areas that should be avoided can be defined by polygons. By default OpenRouteService offers a lot of
different profiles for bikes, cars, pedestrian, trucks, and even wheelchair.123 These profiles can be
adapted to the personal needs by parameterizing the API request.125

The backend offers OpenStreetMap data worldwide and is updated weekly.126 For calculations
OpenRouteService uses the A* algorithm. Developers can interact with the backend through HTTP
GET requests.121 The response of the backend will be in GeoJSON format.124

117 KARICH, Isochrone API, 2017
118 KARICH, Isochrone in open source version of graphhopper?, 2017
119 GRAPHHOPPER, C
120 MCCAULEY & GRI, 2017
121 OPENSTREETMAP WIKI: OPENROUTESERVICE TALK, 2014
122 OPENROUTESERVICE: APIS
123 OPENSTREETMAP WIKI: OPENROUTESERVICE, 2017
124 ELLERSIEK, 2017; SWAGGERHUB, 2017; OPENROUTESERVICE: API FEATURES
125 BUTZER, 2017
126 RYLOV, 2015

 39

OpenRouteService is able to execute an accessibility analysis in respect to travel time or distance for
up to five start locations at once. This kind of computation is possible for all offered profiles.
Isochrone computation is limited to a maximum number of 10 intervals, a maximum distance of 120
kilometers, and a maximum time of 60 minutes. For each start location OpenRouteService returns
the isochrones as contour line of filled polygons. If two or more of them are intersecting each other
they are not merged, but displayed on top of each other.127 Figure 28 shows the result of the
computation of the five and 10 minutes isochrone for the station South of the career fire brigade
Zurich again, this time computed with OpenRouteService.

Figure 28: Example result of OpenRouteService. The inner polygon is a 5 minutes polygon and the outer polygon is a 10
minutes polygon. Again the start point is the station South of the career fire brigade Zurich, Switzerland.128

5.2.2.3 OSRM-isochrone
OSRM-isochrone is an OSRM add-on and computes isochrones via the Turf.js-isolines library on the
base of OSRM files (*.osrm). It is open source and uses open source libraries, software, and data.

The first version 1.0.0 of OSRM-isochrone was released on 1 December 2014. On 26 October 2016
the latest version 3.0.0 was released.129 OSRM-isochrone is maintained by Mapbox, an American
business working with OSM data. Like OpenRouteService OSRM-isochrone is published under the
MIT license. The source code can be found on GitHub (only version 2.0.0) as well as npm
(https://github.com/mapbox/osrm-isochrone or https://www.npmjs.com/package/osrm-isochrone).

Before computing isochrones the OSRM files have to be preprocessed. To compute OSRM files the
Open Source Routing Machine (OSRM) has to be installed. Alternatively the enclosed binary files of
OSRM can be used. OSRM files are based on OpenStreetMap data and use Contraction Hierarchies.
To compute the isochrones beside the start location the time for the isochrones, the resolution of
the grid (generalization), and a maximum speed can be determined. The response will be in GeoJSON
format. 130 An example result of this isochrone computation algorithm can be seen in figure 29.

127 SWAGGERHUB, 2017; OPENROUTESERVICE: APIS; OPENROUTESERVICE: API FEATURES
128 OPENROUTESERVICE: ISOCHRONES
129 NESBITT A. , 2017
130 HERLOCKER, GIRARD, NIKLAUS, VAN DOORN, & RODRIGO, 2016

 40

OSRM-isochrone is no longer maintained, all dependencies are out of date. 131 Also the GitHub
repository of OSRM-isochrone indicates no new activities since around the release of the latest
version in October 2016.

Figure 29: Example of the OSRM-isochrone GitHub repository.130

5.2.2.4 Valhalla
Valhalla is a free and open source routing engine that uses open source data, especially from
OpenStreetMap. It can be self hosted or used via an API that is called Mapzen Turn-by-Turn. No
matter which solution is chosen for computing, the response can be embedded through Leaflet into a
website. The C++ source code and a description of Valhalla can be found on GitHub
(https://github.com/valhalla).132

Routing with trip information in many different languages, computation of isochrones, solving the
travelling salesman problem, map matching, and navigation is possible worldwide with Valhalla.
Valhalla offers several routing profiles like bicycle, car or pedestrian. As a special feature a
multimodal profile is offered that combines public transport (buses, ferries, trains, and subways) with
walking. Information about public transport like routes, stops, and timetables is obtained from
Transitland, an open transit data directory (https://transit.land).133 Custom profiles can be added.134
There is an online example of public transit routing, isochrone computation, and map matching at
https://mapzen.com/mobility/explorer.

Route computation is done by an adapted A* algorithm by using JSON respective GeoJSON for input
and output.135 In contrast to that the Dijkstra algorithm is used for isochrone computation.136 For
elevation ETOPO1, GMTED, NED, and SRTM data is used.137

131 VERSION EYE GMBH
132 FOSTER, et al., 2017
133 MAPZEN: MULTIMODAL TRANSIT ROUTING, 2017
134 NESBITT D. , Valhalla Open Source Routing, 2015
135 NESBITT & WILTON, THOR - DETERMINING THE BEST PATH, 2017
136 NESBITT D. , What are Isochrone Maps?, 2017

 41

Valhalla was announced on 20 March 2015, launched on 04 June 2015 and is still under active
development.138 The latest version 2.3.5 was released on 22 August 2017.139 Valhalla is developed
among others by a core team of Mapzen, an American mapping subsidiary of Samsung. The source
code of the Valhalla project is available under the MIT license, which allows everybody to contribute
and improve Valhalla.132

Valhalla consists of several parts that are responsible for different tasks. A list of modules and their
tasks can be found at https://github.com/valhalla/valhalla/tree/master/docs. The project name as
well as the names of its parts originate from the Norse mythology.

Isochrone calculation can be influenced by selecting a start location, a profile, a list of minutes for
which isochrones should be computed and optically the color in which they should be displayed and
a point of time in case of multimodal profile. In addition to that the result can be displayed either as
isochrones or as filled polygons, small fragments can be filtered out, and the isochrones can be
generalized. If the Mapzen Turn-by-Turn API is used also an API key is mandatory. Then also the
maximum number of isochrones is limited to four. The response is in GeoJSON format and can be
displayed on a map.140 An example of isochrone computation with Valhalla can be seen in figure 30.

Figure 30: Example result of Valhalla. The inner isochrone is again a 5 minutes isochrone and the outer isochrone is a 10
minutes isochrone. Start point is the station South of the career fire brigade Zurich, Switzerland.

137 MAPZEN: ELEVATION, 2017
138 NESBITT D. , Valhalla Open Source Routing, 2015; DILUCA, GEARHART, KNISELY, KREISER, & NESBITT,
Introducing Valhalla, 2015
139 DILUCA, GEARHART, KNISELY, KREISER, NESBITT, & WILTON, Release notes, 2017
140 MAPZEN: ISOCHRONE, 2017

 42

5.2.3 Digital proprietary methods
Digital proprietary methods are mentioned just for the sake of completeness because they do not
conform to the predefined aims in chapter 1.2. As one example of a digital proprietary method the
computation of isochrones via ESRI ArcGIS is described.

Computing Isochrones is possible by using ArcGIS Online as well as by using ArcGIS Desktop. However
ArcGIS Desktop is more powerful, therefore only this way is described. It is possible to do this
calculation for different profiles like car, pedestrian or truck (called travel modes). These profiles can
also be adapted or new profiles can be added. Calculations are possible for maximum five hours and
maximum 300 miles (around 480 kilometers).

To compute isochrones using ESRI ArcGIS Desktop the tool Service Area of the ArcGIS extension
Network Analyst is necessary. After creating a "New Service Area" it is possible to import the
locations of the stations (up to 1,000) that represents the start locations for the calculation later on.
The definition of the maximum travel time as well as time levels in between is adjustable by default
Breaks in the Analysis Settings. Finally the Solve button has to be clicked to start the computation.
Then the result can be solved by the Export Data function. It is also possible to compute the
isochrones depending on the day and time of day if the available data offers this information. A
detailed description of the workflow can be found at http://desktop.arcgis.com/en/analytics/case-
studies/which-areas-are-within-four-minutes-of-a-fire-station.htm?lg=en.

For computation of the travel time ArcGIS uses the Dijkstra algorithm and stores the travel time in a
Triangulated Irregular Network (TIN). The travel time corresponds to the height of the TIN at a
certain location.141

141 ESRI, 2017; ARCGIS ONLINE HELP, 2017

 43

6 Concept

6.1 Target definition
The calculation of the accessible area originating from a starting point (emergency service station) is
easily achievable for the user through the use of a web interface. The user only has to choose
between a few options and to define the start point by clicking into the map at the desired location.
A suitable routing backend deals with the computation of the isochrones on the fly and the
presentation of the result on the web interface (frontend) again. Examples for the aforementioned
settings are the choice of a vehicle profile, a maximum travel time, and the definition of a name for
the computation. The user has the possibility to store, load, and merge results. While saving a result
to a GeoJSON file the defined name is used to save the file. Although it is technically feasible to do a
accessibility analysis computation with several starting points it is not provided in this work to allow
the user to set different settings for each starting point. To make it still possible to generate a single
GeoJSON file for a city with more than one station the user is able to combine several GeoJSON files
into a single one with a merge functionality. In addition to that it is possible to check whether it is
possible to observe the response time in a defined area or not by using a inspection function. This
function also allows the user to identify undersupplied regions. The inspection can be done through
simultaneous display of the isochrones and the borders of the operation area. Finally a clear function
is available to reset all settings to their default values. It is also possible to add further settings if the
chosen backend supports them.

6.2 Graphical User Interface (GUI)
The graphical user interface as frontend allows the user to interact with the routing service for
isochrone computation as backend. It enables the user to change the settings to influence the
isochrone computation without knowing anything about the operating principles of the backend. In
internet technology the GUI is synonymous to the website.

Zooming and panning functions are standard for web maps. For an easy and comfortable use the
design and the structure of the website also have to be plain, simple, and clearly defined. The
handling has to be intuitive and possible without many words to allow fast using without confusions.
It is also an advantage if a website can be used with just a few interactions to get a result. It is also
very important to make the map section as large as possible to ensure good usability. All modern
online map services like OpenStreetMap or Google Maps use the full size of the browser window. In
addition to that it is also necessary to display the scale of the map to enable the user to gauge
distances. Last but not least it is handy to have a function to clear the map and reset the website to
the default values.

The website is designed according to these specifications. The map section covers the complete
browser window and the controllers are placed at the edges of the window. Only the most important
controller for zoom and search a location as well as a scale bar and the copyright are added directly
on top of the map. All others are combined into a menu. Figure 31 shows a sketch for the GUI.
Selecting the menu controller expands a sidebar with several tabs to change the isochrone
computation method, to handle file, and checking the result as well as display the imprint. Sketches
for the tabs are shown in figure 32 to 34. The first tab is called "Isochrones" and contains all
controller to adapt the computation of the isochrones. Controllers to clear the map, for file handling
and for checking the result are contained in the second tab, which is called "File". By default the first
tab is active.

 44

As explained before each tab includes several controllers to allow the computation of the isochrones,
handling files or checking the result. Depending on the type of setting different controllers are used.
To enable the user to choose between a couple of predefined options like the vehicle profiles a drop-
down menu is used. In this menu all available profiles are listed and if the user selects one of them, it
becomes active. Input fields are used to allow the user to define a name for the computation, search
for a city to check the accessibility and define the travel time. With the help of buttons the user is
able to call functions to clear the map or to handle files.

Figure 31: GUI of the website. The complete browser window is covered by the map. Some controller are added at the
upper left corner. A scale bar and the copyright are presented at the bottom corners. A click at the menu buttons opens a
menu with further settings options.

 45

Figure 32: Extended sidebar. By default the Isochrones tab is displayed where the user can choose a routing profile, the
travel time, and a name.

Figure 33: In the File tab the user is able to reset the map to the default values, handle files, and check if the complete
area is accessible in a defined time interval.

 46

Figure 34: The Imprint tab shows information about the imprint.

6.3 Profiles
"A routing profile is a set of rules that a routing engine [...] uses to find the optimal route between
two points. Routing profiles are generally optimized for the mode of transportation being used to get
between locations."142

Emergency services use numerous different vehicles on land, at sea, and in the air to rescue people
or to avoid damage to property or environment. Subsequent only land vehicles are treated. Most of
them correspond to a standard. A standard ensure a minimum range of equipment that is carried on
a vehicle with this standard to enable the vehicles to handle specific operations. This is important
because a public-safety answering point needs to know immediately which vehicle can be sent to a
special emergency and which not. These standards vary between countries, but neighboring
countries often have similar standards. For example 34 European countries together develop
European Standards (ENs) in the European Committee for Standardization (CEN).143 Also some other
countries oriented their standards to these European Standards.144 European Standards are adapted
to national standards and therefore named with the abbreviation for national standards and for
European Standards, for example DIN EN in Germany.145 One of these standards is the DIN EN 1846,
a standard which defines all different types of fire trucks. Therefore fire trucks are very similar in all
European countries. In this standard the vehicles of the fire brigade are classified into three
categories according to their weight. These categories are light (L: 3-7.5t), medium (M: >7.5t up to
16t), and heavy (H: heavier than 16t).146 In addition to that the DIN Standards Committee Firefighting
and Fire Protection (DIN-FNFW) divides the three categories further in the six classes L I (3-4.75t), L II
(> 4.75 up to 7.5t), M I (> 7.5 up to 9t), M II (> 9 up to 14t), MIII (> 14 up to 16t), and H (heavier than

142 MAPBOX, 2017
143 EUROPEAN COMITTEE FOR STANDARDIZATION: CEN MEMBERS, 2017
144 EUROPEAN COMITTEE FOR STANDARDIZATION: CEN AFFILIATES, 2017; EUROPEAN COMITTEE FOR
STANDARDIZATION: LIST OF COMPANIONS, 2017
145 DIN DEUTSCHES INSTITUT FÜR NORMUNG E.V., 2017
146 STAATLICHE FEUERWEHRSCHULE WÜRZBURG, 2016, p. 7

 47

16t) in DIN SPEC 14502-1. In their type list of the most common standardized fire trucks they also
summarize the vehicle dimensions and weight of 24 different types of fire trucks.147

The profiles for the accessibility analysis are formed according to the six classes of DIN SPEC 14502-1.
An additional profile for ladder trucks is formed, because of their much larger vehicle dimensions.
The vehicles of EMS and THW are compared with these profiles and assigned to the corresponding
one. In some cases the profiles have to changed a bit. EMS vehicles are standardized in DIN EN 1789,
to develop the profiles also the specifications of the Bavarian Red Cross (BRK) for the different kinds
of EMS vehicles were used.148 Vehicles of THW are assigned to the profiles according to the list of all
vehicle types of the THW federal association, information about the vehicles of chapters on their
websites, and specifications about the different divisions of the THW (StANs).149

All profiles have some emergency attributes in common which enables vehicles of these profiles to
use among others roads that were built specifically for emergency services like emergency accesses
to motorways. Moreover emergency service vehicles have the permission to drive faster than the
permitted maximum speed and to ignore traffic rules in consideration of that they do not endanger
or force other road users if they use special signs.

The maximum vehicle dimensions, weight, and speed of the profiles are defined as shown in table 1.
The values are oriented towards the previously mentioned standards and regulations as well as an
average value of many different vehicles for the maximum speed of category LI.

Category LI LII MI MII MIII H Ladder
Max.
weight

4.75t 7.5t 9t 14t 16t - 16t

Max.
length

6.5m 8.0m 8.0m 8.6m 10m 10m 11m

Max.
width

2.3m 2.55m 2.55m 2.55m 2.55m 2.55m 2.5m

Max.
height

3.1m 3.3m 3.4m 3.5m 3.5m 4m 3.3m

Max.
speed

120km/h 100km/h 100km/h 100km/h 100km/h 100km/h 100km/h

Table 1: Definition of the profiles.

In addition to the maximum speed shown in Table 1 it is also necessary to define different speeds for
different road types. Beside the in chapter 2.5.1 mentioned average speeds in town and out of town
no more precise information is available at the State Fire Brigade School Baden-Württemberg150 and
at the volunteer fire brigade of Constance.151 Also career fire brigades do not have much more
information. For example the career fire brigade of Wiesbaden performed test drives to compute
their accessible area107 and the career fire brigade of Karlsruhe analyzed measured emergency
drives.152 For this reason the speed for different road types in case of an emergency drive is defined
as 10% faster than the permitted maximum speed.

147 DIN-NORMENAUSSCHUSS FEUERWEHRWESEN, 2016
148 BAYRISCHES ROTES KREUZ, 2017
149 BUNDESANSTALT TECHNISCHES HILFSWERK, 2017
150 HÜSCH, 2017
151 FISCHER T. , 2017
152 WOLTER, 2017

 48

To check the response time required by law only the inspection for the slowest vehicle is necessary,
because the response time is only fulfilled if all needed vehicles are at the scene. But there are also
laws for the maximum response time of some special vehicles. To check them there are a few
additional profiles. The most important and most used vehicles of the three analyzed emergency
services are assigned to the different profiles in table 2. In addition to that it is not reasonable to
create an own profile for each type of emergency vehicle because there is a wide range of different
vehicle types. There are also some special vehicles which do not meet the standard for any vehicle
type.

Class Examples
LI Command Vehicle

Emergency Ambulance
Emergency Physician Car
Patient Transport Ambulance
Personnel Carriers
Small Command Support Unit
Small Fire Engine
Squad Truck type 1
Squad Truck type 5

LII Mobile Intensive Care Unit
Small Operational Support Unit
Squad Truck type 2

MI Medium Fire Engine
MII Equipment Vehicle type 2

Fire Engine
HazMat (Hazardous Materials) vehicle
Heavy Rescue Vehicle
Small Water Tender
Squad Truck type 3
Squad Truck type 4

MIII Large Command Support Unit
Large Fire Engine
Large Operational Support Unit
Large Water Tender

H Equipment Vehicle type 1
Multi-Purpose Vehicle
Swap Body Vehicle

Ladder Aerial Ladder Platform
Turntable Ladder

Table 2: Examples of the most important vehicles of fire brigades, EMS, and THW inclusive their assignment to the
previous defined profiles.

6.4 Test and selection of the routing algorithm
Three of the four routing algorithms mentioned in chapter 5.2.2 are investigated. OpenRouteService
is not useable because of its usage restrictions.

The main characteristics of the remaining three routing services are summarized in the following
table.

 49

Service GraphHopper OSRM Valhalla

Open source base-
version yes yes yes

Complete open source
version (especially

isochrone part)
no yes yes

Isochrone Isochrone API Extension OSRM-
isochrone yes

Algorithm selectable between CH,
A* and Dijkstra CH A* with improvements

Language Java C++ C++

Table 3:Comparison between GraphHopper, OSRM, and Valhalla. The abbreviation CH stands for Contraction Hierarchies.

All of the presented routing services are at least partly open source and use OpenStreetMap data for
their routing graph. Therefore all of them are usable worldwide.

The Isochrone API of GraphHopper is closed source and just usable with an API key, hence this
service is also not usable, because it does not confirm to the guidelines defined in chapter 1.2.

In principle OSRM-isochrone as well as Valhalla confirm to all guidelines and are consequently
useable, but as already mentioned the support of OSRM-isochrone is not as good as for Valhalla.

As a result Valhalla is the best choice for this task.

 50

7 Implementation
The development part of this work focuses on a user-friendly frontend for accessibility analyses. The
computation backend makes use of open source routing algorithms. As described in chapter 6.4
Valhalla is chosen as routing algorithm for this project. Only some small adaptations have to be done
at this point as discussed in chapter 7.3.
The frontend is coded in HTML, CSS, and JavaScript. HTML is used to define the structure of the
website, the design is done by CSS, and JavaScript is used to program the interactivity like sending
routing requests as well as receive, interpret and present the response from the routing algorithm at
the backend.

For clarity the HTML, CSS and JavaScript code parts are divided into different files. Different files are
also used for different functions or groups of functions. The folder structure is clearly divided, too.
The Valhalla backend is stored in the folder called "valhalla" and the frontend is stored in the folder
called "frontend". Inside the frontend folder there are two folders, one for all code files and one for
the image files. The code for the website of this project can be found at GitHub
(https://github.com/BFutterer/Masterthesis).

Figure 35 shows the architecture of this project. The part inside the gray box is running on the
development machine and the other parts are used as services.
All functionalities are controllable via the website, therefore it uses the libraries Leaflet, Turf.js, and
jQuery besides custom functionalities. Leaflet is used to display the map tiles of the OpenStreetMap
tile server as well as the computed isochrones, the markers for the starting locations, and the
boundaries at the website. Turf.js is needed to merge the GeoJSON files and jQuery allows to simplify
and reduce the code. Accessibility analyses are performed by a local installation of the routing engine
Valhalla.
The OpenStreetMap tile server provides the map tiles that are embedded into the website with the
help of the Leaflet library, and the Nominatim service enables the geocoding functionality as well as
the search for the boundaries of cities.
The most important parts of the code used for this project are explained in the following chapters.

To develop this project only a routing graph for Switzerland and Liechtenstein is generated. This is
also possible for all other countries. However the generation of a worldwide routing graph needs a
lot of time.

 Moreover accessibility analyses should be possible worldwide. In this project this is only possible for.

 51

Figure 35: The architecture of the project. The gray box defines the parts of the project that are running on the local
machine. The key component is the website that allows to control the accessibility analysis. Additional functionalities are
imported to the website by adding the libraries Leaflet, Turf.js, and jQuery. To perform the accessibility analyses a copy
of the routing engine Valhalla is set up locally (see chapter 7.2). OSM map tiles (background map, see chapter 7.2.1) and
Nominatim (geocoding and boundaries for the inspection function, see chapters 7.4.3 and 7.4.4) are used as services via
an external interface.

Accessibility Analysis is set as title of the website and also an appropriate favicon is added to be
visualized in the tab for the website. This can be seen in figure 36.

Figure 36: Favicon and title of the website are displayed in the tab.

7.1 Graphical User Interface
The Graphical User Interface (GUI) is used to enable a user-friendly handling of the accessibility
analysis. Via the GUI the user can control all important settings to adapt the analysis to their needs.
Moreover the user is able to store, import and merge files via the GUI. Figure 37 shows the default
display of the GUI.

 52

Figure 37: The GUI of the project. The map covers the complete screen. In the upper left corner of the screen controls for
zooming, search for locations, and open the settings menu are placed. The scale bar can be seen in the lower left corner.

7.1.1 Layout
To ensure a good visibility of the result of the accessibility analysis the map covers the complete
screen. Some basic functions can be chosen by selecting one of the buttons in the upper left corner.
Additional settings can also be achieved via this buttons.

Icons are used instead of text on the buttons to reduce their size as well as to simplify the usage. A
tooltip briefly explains the respective function of each button if it is not clear. The tooltips can be
opened by a mouse over, this can be seen in figure 38. Equally the functions inside the settings menu
are explained with the help of tooltips as figure 39 shows.

Figure 38: A tooltip explains the functionality of each button if it is unclear. It can be opened by a mouse over.

 53

Figure 39: The functions inside the settings menu are also described by a tooltip.

The upper two buttons can be used for zooming. Alternatively zooming also can be done using the
mouse wheel.
The magnifier represents a locate function with which the user is able to search for a desired location
using Nominatim, the center of the map will automatically zoom to this location. If the button has
been selected a search filed like it is visible in figure 40 appears.
A click on the lowest buttons opens the complete settings menu. This menu is divided into three
tabs. The first is used to adapt the accessibility analysis to the specific needs. Therefore for instance
the vehicle or the travel time can be set here (see figure 41).In the second tab it is possible to reset
the map to the default settings as well as export, import, and merge files. The user can visually check
whether all necessary areas can be reached within the predefined time period. Figure 42 shows the
second tab.

 54

Figure 40: Selecting the magnifier button opens the search location function. A desired location can be written in the text
field to look for it. The center of the map will automatically zoom to this location.

Figure 41: Available settings for adapting the isochrone computation. The profiles are named according to classes of DIN
SPEC 14502-1 (see chapter 6.3). To make the selection easier for the user an example is given for each class.

 55

Figure 42: Settings to reset the map, handle files and check if all necessary areas are reachable within the predefined
time period.

7.1.2 Menus
The settings menu can be fade in by selecting the menu button. If the button is selected again or the
close button in the settings menu is clicked the settings menu is faded out. As described in the
previous chapter the settings menu is divided into three tabs. These tabs are defined in a class called
"tab" like it is visible in figure 43. The functionality of these tabs is coded in the JavaScript file
sidebar.js.

Figure 43: Definition of the tabs for isochrone computation, file handling and imprint. The tab for isochrone computation
is by default set as active tab.

A table is used to define the structure of the first two tabs. These tables are enclosed by a form
element to enable sending the chosen settings to a server.
Inside the table the different settings options are programmed via various HTML elements. For drop-
down menus the select element is used. Figure 44 shows the implementation of the vehicle
selection. In addition to that drop-down menus are also used for defining the display of the result (as
isochrones or as polygon) and for choosing the correct city from a list of results after search.

 56

Figure 44: Definition of the drop-down menu for choosing the desired vehicle via a select element. If the vehicle has
changed the isochrone computation is repeated (function generateIsochrones()). For an explanation of the profiles see
chapter 7.3.

Input fields are used to enter text and to change the default values of numbers or to display buttons.
Depending on the purpose for which the input is used input fields of the type button, number or text
are used. Input fields of type button create selectable buttons.

The type number prevents the input of other characters than numbers, whereas all characters can be
inserted into input fields of type text. If the type number of input fields is used it is also possible to
define a minimum and a maximum value that can be entered as well as a default value. The code for
the input field for the travel time is visible in figure 45. Beside selecting travel time input fields of
type number are used to define the denoise and the generalization value. Input fields of type text are
used for enter a name for the request and the city name to check if all necessary areas are reachable
within the set time period.

Figure 45: Definition of the input field for the travel time. It is possible to insert numbers (type) between 1 (min) and 20
(max). The default value is 4 (value). If the value has changed the isochrone computation is repeated.

Buttons are used to create the tab chooser (see figure 43) as well as to offer the user the opportunity
to cause the actions reset, save, import, and merge. If a button is clicked the respective defined click
event is triggered (onclick). Figure 46 shows the definition of the buttons for export a file and import
one file or several files.

Figure 46: Definition of the export and the import button. Visible is also a part of the table structure. Each button is
located in an own table row (tr element) and an own column (td element). The path to the location where the export file
should be stored replaces the variable "#" in the link attribute (href) later on. Clicking the import button opens a file
chooser (type = file) that only displays GeoJSON files (accept=".geojson"). The selection of several files is possible
(multiple). Because HTML 5 only allows to open a file chooser via an input field of type file, but due to an uniform
appearance an additional button is needed and the input field is set invisible (style="display:none;"). If the button is
clicked it triggers the click event of the input field.

 57

7.2 Integration of Valhalla
For developing this project version 2.3.0 as from 21 July 2017 is used as backend.139 The project
development was done on a Linux operating system.

There are installation instructions at the GitHub repository of Valhalla
(https://github.com/valhalla/valhalla). Either Valhalla can be built from source or a Personal Package
Archive (PPA) can be used. Installing Valhalla via PPA has the advantage that it is quicker and easier
than building from source. Therefore this way is used in this project.

At first the Valhalla GitHub repository has to be cloned. This takes around one minute. Although this
is normally not needed if PPA is used, it was done this way in this work.
Before starting to install Valhalla changes in the source code of Valhalla can be made. In this case the
number of isochrones has been increased to 30 in the valhalla_build_config file (see chapter 7.2.2.2
for further information).
Subsequently the PPA can be installed like described in the "Get Valhalla from Personal Package
Archive (PPA)" paragraph, which takes another minute.
Afterwards the commands below the hint "After getting the dependencies install it with" have to be
executed. Therefore circa 10 minutes are required. This step has also to be executed each time
something has been changed in the Valhalla routing algorithm.
Finally the OSM data have to be downloaded and the routing tiles have to be computed out of this
OSM data. This is described in the "Running" section. Daily updated OSM data for the desired
countries or regions can be downloaded as data.osm.pbf from the website of the Geofabrik
(http://download.geofabrik.de).153 For Switzerland and Liechtenstein this took approximately nine
minutes. This paragraph describes also how to start the server and open an example website.
To start the server again later on, each time the command valhalla_route_service
valhalla.json 1 has to be used.

The previously mentioned durations for the separate installation steps depends on the machine and
internet connection. They should only be interpreted as a reference value.

7.2.1 Primitive map
The installed Valhalla code already includes an example file (see
https://github.com/valhalla/demos/blob/gh-pages/isochrone/index.html) that can be modified and
extended. A detailed description how to add Valhalla to a website can be found at
https://github.com/valhalla/valhalla-docs/blob/master/add-routing-to-a-map.md. The Leaflet library
is used to display a map in the website and therefore has to be imported.

The HTML code has to contain a div element with the ID map and a size lager than zero in which the
map will be displayed. This looks for example similar to this:
<div id="map" style="width: 1440px; height: 960px"></div>. However the
size can also be set in a separate CSS file instead of using the style attribute. In addition to that the
map is placed into this map element by map = L.map('map').setView([47.6, 9.15],
13);, whereat the pair of coordinates sets the center of the map and the single number defines the
zoom level of the map. The higher the zoom level the larger the scale and more detail the map. The
L.-statement is a reference to Leaflet. To show the OSM map in the map element also the code in
figure 47 has to be added.

153 GEOFABRIK, 2016

 58

This is already enough to add a OSM map via Leaflet to a website.

Figure 47: Code snippet to add the OSM map to the map element. Moreover the maximum zoom level is set to 18 and a
copyright is defined.

7.2.2 Settings
Valhalla offers a lot of settings to influence the isochrone computation in the range from
fundamental settings (like the maximum number of isochrones or the maximum travel time) to
special settings such as generalization of the result or selection of a routing profile. These settings are
explained in more detail in the next two chapters.

7.2.2.1 Default settings
By default Valhalla computes a maximum of four isochrones in the range of 120 minutes or 25
kilometers. The isochrones are displayed in default colors, if no other colors are specified. It is only
possible to define one start location.154 In addition to that Valhalla sends isochrone computation
requests by default to Mapzen's Time-Distance-Matrix service and an API key is needed for that.
Computations are performed for the car profile. The response is visualized as isochrones with an
generalization of 150 meters in the Douglas-Peucker algorithm. All areas that are smaller than 20% of
the main area of the same time period are dropped. The starting location is defined by clicking into
the map.155

7.2.2.2 Adapted settings
Some of the settings described in the previous chapter have to be increased and other settings have
to be made changeable by the user to give them the possibility to adapt the isochrone computation
to their needs.

Above all it is important to increase the number of isochrones, because for each minute an isochrone
should be drawn. Breathing apparatus units and HazMat vehicles have a maximum 30 minutes travel
time, because they have to cover a larger area than all other types of fire trucks. Because of this it is
the longest travel time of all listed fire trucks at the References to the capability of the fire
brigades.156 Therefore this value is defined as maximum travel time and therefore the maximum time
for that isochrones have to be computed. Additionally the color of the isochrones or polygons is
defined in a color gradient from green to red depending on their time value. Green is used for short
travel times and red is used for long travel times. The computation of the color of each time step is
done in the HSV color scheme, because it is easier to compute the values just for one scale (Hue-
scale 0 to 1) instead of interdependent 3 scales (red, green, blue). But the RGB color scheme is
necessary to be able to display the colors on the screen. Therefore the HSV have to be converted into
RGB values. This is done by the function HSVtoRGB that is visible in figure 48. Figure 49 shows the
code to compute the appropriate color for each time step. Each isochrone is defined by a statement
such as {"time":20,"color":"#abcdef"}.

154 DARA-ABRAMS, et al., 2017
155 KREISER, Isochrone demo, 2016
156 LANDESFEUERWEHRVERBAND BADEN-WÜRTTEMBERG, 2008, pp. 20-21

 59

Figure 48: Function HSVtoRGB that is used to convert the HSV values of each isochrone to RGB values to be able to
display them on the screen. In addition to that the function toPaddedHexString is used to add a 0 in front of hexadecimal
numbers. This is necessary because Valhalla needs colors in a scheme like #abcdef". These functions can be found in the
map.js file.

Figure 49: Function to compute the color of each individual isochrone. The final definition of an isochrone with
appropriate color looks like {"time":20,"color":"#abcdef"}. This code snippet can be found at the function
generateIsochrones in the map.js file.

The maximum number of isochrones can be changed in the valhalla_build_config file in the scripts
directory. At line number 189 the value 4 has to be replaced by 30. Figure 50 shows the mentioned
code part of the original code.

In addition to that the URL to which the request should be send is changed from Mapzen's Time-
Distance-Matrix service (https://matrix.mapzen.com/isochrone?json=) to the local
host (http://localhost:8002/isochrone?json=). This can be found in the map.js file of
the project at line 212.

To allow a more exact inspection of the result, the maximum zoom level of the embedded OSM map
is increased to 19 in the bodyLoadScript.js file, which is also the maximum zoom level of OSM itself.

 60

The user should be able to adapt the following settings to their needs. These settings cover the
choice of a profile, the presentation method for the result (isochrone or polygon), the generalization
of the result as well as the definition of a denoise value to drop smaller areas, the determination of
the travel time (the computation of all possible isochrones is not always reasonable) and an
optionally definition of a name for the computation. The implementation of this is already described
in chapter 7.1.2. Figure 41 shows the coded default values for each of the mentioned settings.

For all other settings the default settings are kept.

Figure 50: Code snippet that have to be changed in the valhalla_build_config file. The variable max_contours defines the
maximum number of isochrones.

7.3 Vehicle Profiles
Valhalla allows the use of different routing profiles for the computation. Several routing profiles for
different modes of transportation like car, bicycle, and pedestrian are available by default. An
overview of many available profiles can be found on the website of Mapzen at
https://mapzen.com/documentation/mobility/turn-by-turn/api-reference/#costing-options. It is also
possible to add custom profiles by deriving them from existing profiles. The profiles are called costing
methods and are stored in so called "costing files". With the aid of these costing files Valhalla is able
to generate dynamic and run-time costing, which means the costs are not directly added to the
routing graph but stored separately. Therefore the graph does not have to be recalculated to add a
new profile. Costing computation is done in a module called "Sif".

To add a new profile it can be derived in an already existing costing file or a new costing file for the
profile can be created. A new profile typically requires a source and header file (costfile.cc and
costfile.h). Both have to be added to Makefile.am for the build process. Deriving the profile inside an
existing file does not require any new files.

The new profile has also to be added to the worker.cc files of the modules Thor and Loki as valid
costing option to get added to the CostFactory function. This function computes the costs for the
edges dependent on the profile. In the file valhalla_build_config the maximum distance of a route
and the maximum number of locations visited per route can be defined. After a new profile has been
added, Valhalla has to be compiled again to offer this profile for computing the isochrones.157

For the emergency service profiles the attributes for maximum speed, vehicle dimensions and weight
are necessary. These attributes differ between the classes defined in chapter 6.3, but all of them

157 KREISER & NESBITT, SIF - Dynamic Costing within Valhalla, 2017; NESBITT D. , How to add new profiles to
valhalla?, 2017

 61

have the permission to drive on all roads in common. For this reason it is useful to create a new
costing file that contains all the profiles for each class.

It was attempted using both of these methods to create a costing for specific emergency service
profiles, but due to lack of accessible examples or documentation this turned out to be too time
consuming for this thesis.

While the vehicle characteristics of emergency services vehicles differ from those of regular vehicles,
the difference in the resulting isochrones is not expected to be significant and hence it was decided
to work with the default auto and truck profiles. Therefore these profiles have been assigned to the
classes as can be seen in table 4.

Class Used Valhalla profile
LI auto
LII auto
MI truck
MII truck
MIII truck
H truck
Ladder truck
Table 4:Used default profiles of Valhalla for each class.

7.4 Coded functionality
Beside the computation of the isochrones it is also mandatory to offer functions to the user to enable
them to store the result as well as to import results they have already computed. As mentioned in
chapter 6.1 the possibility to define several starting locations is waived in favor of the
implementation of a merge function, because this allows also the combination of the results of
accessibility analyses with different settings. In addition to that it is reasonable to compare the result
of the accessibility analysis with the boundary of the alarm response area respective the city to find
areas that are not reachable in the prescribed time interval. Additionally a geocoding function is
included to locate the desired city. All of these functions are described below.

7.4.1 Isochrone computation
The user can influence the computation by adapting the computation attributes to their needs. As
shown in figure 41 the five attributes vehicle (for computation used routing profile), display (of the
result), denoise (dropping of small areas), generalization (of the result), and the travel time
(maximum time for that isochrone should be calculated) can be changed. These attributes are
customized via the Isochrone tab of the settings menu. The user has the possibility to add a name to
the request in order to better differentiate between several accessibility analyses. Last but not least
the starting location is defined by clicking on the desired place in the map. If one of the mentioned
attributes has changed the isochrones are recomputed. This is done by calling the function
generateIsochrones in the map.js file. Figure 51 shows the part of this function in which the URL is
build to send a request to the Valhalla backend.
At the beginning of this function it is checked if a starting location has been chosen. If not nothing
more is done, else the next commands are executed. To request a single isochrone the syntax:
{"time":20,"color":"#abcdef"} is needed. The definitions of all isochrones are collected
in the array contour. This requires the value of the currently chosen travel time and is done like
already described in chapter 7.2.2.2 and visible in figure 48 and figure 49. Next the adapted values of
all attributes are attached to the fixed front part of the request URL. The command

 62

encodeURIComponent is used to enable also special characters for the name. This encodes
special characters to their corresponding ASCII value for the request, for example an ampersand
character ("&") is replaced by %26.

Figure 51: Code snippet of the first part of the generateIsochrones function. In this part the URL is build to send a request
to Valhalla.

In the following step all potentially existing layers except the OSM layer are deleted. This is done by
the code displayed in figure 52.

Figure 52: Code used to delete all potentially existing marker, isochrone, and boundary layers from the map. Only the
OSM base map remains unchanged.

Then the URL is sent to the backend and the inner function computeIsochrones is called. In this
function all potentially existing isochrones (variable geojson)) and tooltips are deleted, before the
new isochrones are added to the map by calling the addGeoJson function. Furthermore a marker is
added to the map to display the clicked position. In addition to that a tooltip with the name chosen
for the request and the location is appended to the marker. Figure 53 shows the code described.

 63

Figure 53: Code extract of the last part of the generateIsochrone function the inner function computeIsochrones. Before
the new isochrones are computed the potentially existing old isochrones and tooltips are removed. Moreover a marker is
set to the chosen starting location inclusive a tooltip that shows the chosen request name and the clicked position.

Valhalla computes the isochrones by dividing up the map into a two-dimensional grid and computing
the cost to reach each grid square from the starting point. For that the Dijkstra algorithm is used. The
cost calculation stops when the maximum time interval is reached. The resulting two-dimensional
grid with travel costs to each cell from the starting location is used to compute the isochrone
contours with the aid of CONREC. Because CONREC only provides separate line segments, they have
to be pieced together to form closed contour lines.136 However this raster based approach to create
isochrones causes a bit of imprecision of the result.
Finally the response is visualized via the addGeoJson function by using Leaflet. This function also
appends tooltips to the isochrones that indicate the respective time interval. Figure 54 shows only
the basic part of the code for this function because of clarity. The remaining part is explained in
chapter 7.4.2.3. In Figure 55 the result of an isochrone computation for the fire station Luzern
Kleinmatt can be seen. This figure also shows the tooltip that is opened if the user selected the
marker of the starting location. Inside this tooltip the inserted name and the location of the marker
are visible.

 64

Figure 54: Basic code of the addGeoJson function. In this function the response is visualized in the map. In chapter 7.4.2.3
the extension for converting FeatureCollections to Features is described. It is added at the beginning of this function, but
left in this picture because of clarity.

Figure 55: Result of the isochrone computation for the fire station Luzern Kleinmatt. Selecting the marker of the staring
location opens a tooltip with the inserted name and the chosen location.

 65

7.4.2 File handling
The complete file handling functionality is collected into the file_handling.js file. This includes an
export functionality of the response (isochrones and starting point) as well as an import functionality
which allows the user to import a GeoJSON file they created earlier, and a merge functionality to
merge several GeoJSON files into a single one.

7.4.2.1 Export to a GeoJSON file
To save the result of an accessibility analysis into a GeoJSON file the export function is needed. At
first this function checks whether the variables of the starting point as well as the isochrones are
defined and therefore contain some content. If this is not the case the function issues an alert and
terminates, else the content of the variables of the starting point and the isochrones are combined
into a single one. Additionally headings for the two different parts are included in front of them.
Before it is possible to save the content to a GeoJSON file it is necessary to convert the output into a
JSON string. In addition to that the name of the output file is created from the fixed part
"accessibility_analysis_" and the attached name the user inserted into the name input field
("giveId"). The extension of the GeoJSON format completes the file name. If the user inserted no
name, the file name would only be accessibility_analysis.geojson. Figure 56 shows the code of the
export function.

Figure 56: Code of the export function. The if...else statement avoids saving empty files by checking whether neither the
variable for the starting point nor the variable for the isochrones is undefined. To facilitate the comprehension of the
exported file a heading is added in front of the coordinates of the starting point respective the isochrones. Furthermore
the output is converted to a JSON string to be able to save it in a file. Finally the file is stored in the download directory
of the user the file name accessibility_analysis_CITYNAME.geojson, whereat CITYNAME represents the term the user has
inserted in the name input field.

7.4.2.2 Import of GeoJSON files
With the aid of a file chooser (see figure 57) the user is able to select the GeoJSON files that they
want to visualize. It is possible to select one or several GEOJSON files. The file chooser is
implemented in HTML through an input field of type file. However this is not the favored display type
to open a file chooser. Therefore this input field is hidden and a button is added that triggers a click
event of the input field if it is selected. To prevent the import of wrong file formats, the file chooser is
adjusted to only accept GeoJSON files by defining the accept=".geojson" attribute. The code to
implement the file chooser can be seen in figure 46.
When the import button is clicked the import function is called. Inside this function all files that

 66

should be opened are stored in a FileList. Subsequently each file of this FileList is imported through a
FileReader and instantly converted to a JSON object. From these JSON objects the isochrones and the
starting points are imported separately by the use of var importGeojson =
byteStringArray[i]["isochrones"];, respective by var pos =
byteStringArray[i]["startpoint"];. Finally the isochrones are added to the map by
calling the addGeoJson function and the starting points by creating a marker for each of them that
are shortly after each other added to the map. Via map.setView([pos["lat"],
pos["lng"]], 13); the map is focused to the last imported starting point.

Figure 57: The file chooser displays only GeoJSON files because of the limitation accept=".geojson". For further
information see chapter 7.2.1. If an already existing name is reused the new file gets an appendix like it can be seen for
Köniz in this example.

 67

Figure 58: Code of the import function. The implementation of the file chooser is visible in figure 44. At first a FileList is
created to store all files that should be opened. Then the individual files are imported via a FileReader and converted to
JSON objects. Isochrones are imported by var importGeojson = byteStringArray[i]["isochrones"];
and added to the map by calling the addGeoJson function. Similar to that the starting locations are imported by var
pos = byteStringArray[i]["startpoint"]; and displayed by creating a marker for each of them that are
subsequently added to the map. Moreover the map is focused to the starting point via
map.setView([pos["lat"], pos["lng"]], 13);, in case of several starting points the map is centered to the
last imported starting point, because the definition of the starting point is overwritten in each iteration of the loop.

7.4.2.3 Merge several GeoJSON files
Because the used Valhalla version cannot compute isochrones for several starting locations at the
same time it is necessary to offer an opportunity to unify the results of various accessibility analyses.
The result of a merge of the two fire stations in Kreuzlingen can be seen in figure 59.

 68

Figure 59: Merge of two fire stations in Weinfelden and Bürglen, Thurgau, Switzerland. Each fire station is represented by
a marker. If the isochrones for each time level intersect each other they are merged to a single one, else two separate
isochrones are drawn.

This is done with the aid of the union module of Turf.js. Therefore it is necessary to import the Turf.js
library or at least the Turf.js union module. Turf.js is an open source JavaScript library. The source
code of the union module, a description, and some examples can be found at GitHub
(https://github.com/Turfjs/turf/tree/master/packages/turf-union). Further explanations about this
module are also available at the Turf.js website (http://turfjs.org/docs/#union).

Turf.js uses the JavaScript Topology Suite (JSTS) of Björn Hartell under the hood to merge
polygons.158 Sometimes JSTS causes an error that prohibits the union of polygons. This error can be
avoided by increasing the generalization value. This error is also mentioned at the GitHub repository
of JSTS as follows: "In some cases you might get a TopologyException thrown as an Error. This is
expected if a calculation fails due to precision issues. To resolve this issue try reducing precision in
the input".159

As shown in figure 60 the first part of the merge function code is almost identical with the code of
the import function. Just some extra variables are appended. The code below the blank line adds the
isochrones to an array and converts polygons to LineStrings (Isochrones). All the markers of the
starting location are attached to an additional array.

158 MACWRIGHT, CARRIERE, BORGHI, WINSEMIUS, & DEFOSSEZ, 2017
159 HARTELL, 2017

 69

Figure 60: First part of the merge function. Except of adding a few variables the code above the blank line is equal to the
code used in the import function (see figure 58). Later on the content of all GeoJSON files is stored in a single array called
mergeArray. In doing so polygons are converted to LineStrings.

Subsequently the variable handleFiles is counted one up each time the loop is traversed. This is
needed to check if all files are added to the array. If this is the case the isochrones of the identical
time interval are merged in the union variable and then added to the completeMerged array. Figure
61 shows the just explained code. Because the union module of Turf.js uses polygons the input to
this and the output of this have to be converted from LineString to polygon and from polygon to
LineString. However this is tricky, because if the polygons do not intersect each other they are stored
as Features in an additional FeatureCollection within the usually FeatureCollection, however this
contradicts the GeoJSON format. Therefore they are not visualized. This problem is solved by
eliminating these redundant FeatureCollections as can be seen in figure 64.

 70

Figure 61: Resumption of the code of the merge function. In this code extract the variable handleFiles is counted one up
each time the loop is traversed to be able to check when all files are added to the array. Then successively the isochrones
are merged in the union variable separate for each minute. Because the output of Turf.js union are polygons, these
polygons are converted to LineStrings.

Like figure 62 shows the merged isochrones are then colored in the same manner as already
described earlier. After that the isochrones and the markers are added to the map via the
addGeoJson function. Finally the result of the merge is exported and saved in a file called
accessibility_analysis_merged.geojson. This functionality can be seen in figure 63.

 71

Figure 62: In this extract of the merge function the resulting isochrones are colored from green to red depending on the
duration like described in chapter 7.2.2.2. The merged isochrones are visualized at the map by calling the addGeoJSON
function. The markers for the start locations are merged by simply aggregate in an array.

Figure 63: This extract of the merge function shows the export of the merged files as a file called
accessibly_analysis_merged.geojson. Therefore the result of the merge is converted to a JSON string and the headings
"isochrones" and "startpoint" are added. This is similar to the already described procedure in the export function.

 72

Figure 64: In this extract of the addGeoJson function potentially existing redundant FeatureCollections are eliminated.
For that purpose at first it is checked whether the last element of the "json" array (this contains all the isochrones) is a
FeatureCollection. The last element is always the 1 minute isochrone. If this is the case a new object called "converted" is
created in which the Features should be stored later on. Then all elements of the json array are investigated. If an
element is a FeatureCollection the in it included Features receive the properties of the FeatureCollection and are stored
in "converted". Else a new object "y" is created with the properties of the Feature and attached to "converted". Finally
"json" is overwritten by "converted".

Merging the results of several accessibility analysis disable the determination of the travel time from
a certain starting location.

7.4.3 Inspection of the result
To evaluate the result of the accessibility analysis it is necessary to compare the reachable area with
the boundary of the area that should be reached. Thereby it is possible to visually check whether all
required areas are accessible in the prescribed time interval. Figure 65 shows how to add the city
boundaries for a city. Then a comparison between the isochrones and the city boundary is possible as
it is visible in figure 66.

 73

Figure 65: The name of the city has to be inserted in the text field and then the desired entry can be selected in the drop-
down menu to display the city boundaries.

Figure 66: Four isochrones around the fire station of Weinfelden, Thurgau, Switzerland. To check if all necessary areas are
reachable the boundary of Weinfelden is added as a blue polygon. As a visually comparison shows almost all built-up
areas of Weinfelden are within the four minute isochrone, but there are also large areas of Weinfelden outside the four
minute isochrone.

There are two different possibilities to add these boundaries to the map. On the one hand Overpass
can be used, which adds all borders to the map for the screen extent and on the other hand it is
possible to search for a special boundary via Nominatim and only display this single border.

 74

Although the Overpass way is easier to implement it has the disadvantage that all boundaries in the
screen extent are visualized identically. Therefore it is not possible to distinguish between the
borders of different cities, which is for instance important if a city consists of several disconnected
areas.
For this reason the Nominatim way is used. The user inputs the name of the city or region for which
they want to see the boundary and then they can choose from the drop-down list below the input
field. This is necessary because it is possible that there are different objects that have the same name
in OSM. The input field and the drop-down menu for adding the boundaries of a certain city or area
are visible at the bottom of figure 42.

In the function getBoundaryURL the URL to request the boundaries from Nominatim is built by
attaching the name the user entered to the fixed part of the URL. If there are many objects with this
name in OSM, Nominatim returns up to 10 results by default. This number can be increased or
decreased by defining a number for the optional limit attribute. At the end of this function the
inspect function is called to send the request to Nominatim as well as grab the names of the several
objects and add them to the drop-down menu. Figure 67 shows the function getBoundaryURL and
figure 68 displays the function inspect. The getBoundaryURL function is called when the content of
the name input field (id = city_value) has changed.
Before the boundary of the selected option is added to the map, potentially existing boundaries of
previous requests have to be deleted to avoid confusions. The code for these functions can be seen
in figure 69. These functions are called when the user selects are an option of the drop-down menu.

Figure 67: Code for building the URL to request the boundary of a city or region from Nominatim. Therefore the name
that the user entered is attached to a fixed part of the URL. Finally the inspect function is called.

 75

Figure 68: Code to send the in the getBoundaryURL built request to Nominatim. The response is stored in the variable
data. To grab the names of the objects the line var options = data[i]["display_name"]; is used. This name
is subsequently used to allow the user to choose the correct option in the drop-down menu.

Figure 69: Code of the functions to add the boundaries to the map and to delete the boundaryLayer.

7.4.4 Geocoder
The geocoding functionality is embedded only as a service of Nominatim geocoder, because a local
implementation of Nominatim would by far exceed the storage and RAM capacity of the used
machine. As mentioned in the Nominatim installation guide about 500 GB of hard disk space and at
least 32 GB RAM is necessary to install Nominatim for geocoding worldwide. This would take more

 76

than 2 days to import the required data if a SSD is used, otherwise up to 7-8 days are needed.160 The
source code and an installation guide of Nominatim can be found at
https://github.com/openstreetmap/Nominatim.

In this project the geocoding functionality is part of the basic functions and represented by the
button with the magnifier icon on it as shown in figure 38. Figure 40 shows the geocoding menu if
this button is selected. It consists of a search box and button to start the query. The source code of
the geocoder is contained in the Control.OSMGeocoder.js and Control.OSMGeocoder.css files.
Moreover the geocoding function is added to the map in bodyLoadScript.js as Leaflet control
element.

7.4.5 Clear map function
The user should have the possibility to clear the map content without refreshing the page by pressing
the F5 key on the keyboard or activate the refresh function of the browser, because some browsers
store some information that have been inserted to a website in their cache and therefore do not
delete this. This is solved by the clear map function that is called by selecting the Clear map button in
the File tab of the settings menu. All map layers are deleted (map.removeLayer(layer)) as
well as the text input fields and some variables are exhausted or reset to undefined (for example
document.getElementById("giveId").value="" and startLocation="null"). A
special case is the last variable shown in figure 70 because it is an array.

Figure 70: The code of the clear map function is located in the file map.js.

160 HOFFMANN & TOBIAS, 2017

 77

8 Testing/ verification
To ensure the correct display of the frontend on the most frequently used web browsers as well as
different operating systems, the frontend has been tested on various browsers on different operating
systems. Firefox and Chrome were tested on Windows as well as on Linux and Internet Explorer was
tested on Windows. No significant differences are visible between all tested browsers.

Several test persons had no problems to use the website. The website is clearly structured and
intuitive to handle. It is possible to compute isochrones by only defining the starting location. Just a
few clicks are necessary to adapt the calculation by changing the default settings or to export the
result of the accessibility analysis. The union of GeoJSON files with different settings is possible. The
inspection of the reachable area with the help of city boundaries is useful. The presentation of the
isochrones in a color gradient from green to red shows at the first glance which areas are easy to
reach and which are difficult to reach in a predefined time interval.

All targeted functions are implemented and are well-working except of the custom profiles.
Therefore the default profiles auto and truck of Valhalla are used.

The computed result of Valhalla is reviewed by comparing the travel time with the duration of a
route between the starting location and a couple of points at the 20 minutes isochrone. For
comparison the routes are calculated via GoogleMaps, GraphHopper and Mapzen Turn-by-Turn. No
extraordinary large discrepancies are detected.

But there are also some problems. Because of the raster approach of Valhalla the isochrones do not
match the road network all the time as can be seen in figure 71.

Figure 71: The discrepancies between the isochrones and the road network can clearly be seen at the motorway A7.

Valhalla has also problems to compute isochrones in case there are tunnels. Some examples of this
problem can be seen in figure 72 and figure 73.

 78

Figure 72: Isochrone computing problem of Valhalla at the calculation of the reachable area for the fire station Klosters
Platz, Grisons, Switzerland. The complete tunnel at the right side of the image is marked as reachable, but it is obvious
this cannot be the case.

Figure 73: Wrong results in case the starting point is close to a tunnel and in a tunnel.

 79

9 Summary and outlook

9.1 Summary
In this project the task was to develop a website to perform accessibility analyses via open source
routing algorithms and based on open geodata. This aim has been achieved.

Four different open source routing algorithms were tested and the suitability of OpenStreetMap data
was investigated.
Although the data of OpenStreetMap is not complete it is suitable for performing accessibility
analyses. Generally the quality of OpenStreetMap data is not homogenous. It depends on the
country as well as whether the area is urban or rural. In some western cities it is already better than
other map providers like Google Maps, in some countries it is the best available geodata despite of
the incompleteness.
The routing algorithms GraphHopper, openroutservice.org, OSRM-isochrone and Valhalla were
investigated. These four routing algorithms only OSRM-isochrone and Valhalla offer an open source
isochrone computation and are usable without limitations. Because OSRM-isochrone is not
maintained any more, Valhalla has been selected as a backend.
To allow the user a simple interaction with the Valhalla backend to perform accessibility analyses a
website was programmed as a frontend. This website enables the user to adapt the calculation to
their needs. Among others they can choose between different routing profiles as well as define a
maximum travel time. The travel time is part of the response time and varies between the different
emergency services as well as for different types of emergencies. In addition to that this
configuration option enables the user to compute the alarm response area of special vehicles. The
result of an accessibility analysis can be exported to a GeoJSON file. It is also possible to import a
GeoJSON file created earlier and display it on the OpenStreetMap map. The execution of an
accessibility analysis with several starting points is not possible because on the one hand the used
Valhalla version does not support it and on the other hand it is not wanted, because an accessibility
analysis with several starting points cannot be performed if different routing profiles or travel times
are requested. Therefore a merge function is implemented instead to unify the results of several
accessibility analyses into a single result file. A validation of the result with boundaries of counties,
cities, and boroughs is possible. Hereby it is easy to recognize which areas are reachable within the
predefined time interval and which not. For this purpose Nominatim is used. Although Nominatim is
open source and can be used self-hosted it is used as service in this project, because of the lack of
storage capacity.
Translations of the used discipline-specific words are added as a glossary in the appendix to facilitate
the understanding of the report.

9.2 Outlook and possible improvements
Even though the use of OpenStreetMap data already yields good results, the completeness and the
quality will increase in the future.
A new evaluation of the routing algorithms could also be reasonable in the future, because most of
the algorithms are under active development. For example the newest version of Valhalla offers
accessibility analyses for several starting points and new algorithms like Mapbox-isochrone are
published.

 80

To offer this project to people worldwide it has to run on a server instead of just locally on a single
machine. Therefore a server is needed as well as some little modifications. For example the URL
address has to be changed to the address of the server and a short function has to be written in Bash
that restarts the server if it crashes.

Custom profiles have to be added for the classes defined in chapter 6.3 and explained in chapter 7.3.

Although the result of the accessibility analyses could be more accurate if real time traffic
information or at least average time of day dependent traffic conditions are taken into account, but
the accessibility analysis should provide a general overview instead of a snapshot. Therefore this
could only be an additional analysis.
Also the implementation of additional functions to the frontend is conceivable. For example the
centering of the map to the selected boundary is possible, however this could also be
disadvantageous if not the desired boundary is chosen and therefore the map is centered far off the
desired city. The possibility to save the result in other data formats than GeoJSON, for instance the
Shape format which is widely used in Geographic Information Systems (GIS), would also be an
advantage. Moreover a multilingual website will facilitate the use for non English speaking people.
The backend can also be improved by considering the geometry of the road geometry during the
travel time computation, because on curvy roads vehicles cannot drive as fast as on straight roads.
Partially this is already implemented in Valhalla by reducing the velocity near crossings.

 81

List of literature
AMELUNXEN, C. (2010). An Approach to gecoding based on volunteered Spatial Data . Heidelberg:
University of Heidelberg.

ARBEITSGEMEINSCHAFT DER LEITER DER BERUFSFEUERWEHREN. (2015). Qualitätskriterien für die
Bedarfsplanung von Feuerwehren in Städten. Bonn: Arbeitsgemeinschaft der Leiter der
Berufsfeuerwehren(AGBF).

ARCGIS ONLINE HELP. (2017). Create Drive-Time Areas. Retrieved August 21, 2017, from
https://doc.arcgis.com: https://doc.arcgis.com/en/arcgis-online/analyze/create-drive-time-
areas.htm

BARRINGTON-LEIGH, C., & MILLARD-BALL, A. (2017, August 12). The world’s user-generated road
map is more. Retrieved August 21, 2017, from http://journals.plos.org:
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180698

BARTELME, N. (2005). Geoinformatik; Modelle, Strukturen, Funktionen. Berlin, Heidelberg: Springer
Verlag.

BAYRISCHES ROTES KREUZ. (2017). Produktentwicklung und Qualität - Technik im Rettungsdienst.
Retrieved July 28, 2017, from https://rettungsdienst.brk.de: https://rettungsdienst.brk.de/technik

BILL, R. (2010). Grundlagen der Geo-Informationssysteme (5th edition ed.). Berlin and Offenbach:
Herbert Wichmann Verlag.

BOURKE, P. (1987, July). CONREC - A Contouring Subroutine. Retrieved August 11, 2017, from
http://paulbourke.net: http://paulbourke.net/papers/conrec/

BOURKE, P. D. (1987, June). A Contouring Subroutine. BYTE - The small systems journal , pp. 143-150.

BROVELLI, M. A., MINGHINI, M., MOLINARI, M. E., & ZAMBONI, G. (2016). POSITIONAL ACCURACY
ASSESSMENT OF THE OPENSTREETMAP BUILDINGS LAYER THROUGH AUTOMATIC HOMOLOGOUS
PAIRS DETECTION: THE METHOD AND A CASE STUDY. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences , pp. 615-620.

BUNDESANSTALT TECHNISCHES HILFSWERK. (2017). Fahrzeuge. Retrieved July 28, 2017, from
www.thw.de: https://www.thw.de/DE/Einheiten-
Technik/Ausstattung/Fahrzeuge/fahrzeuge_node.html

BUTLER, H., DALY, M., DOYLE, A., GILLIES, S., HAGEN, S., & SCHAUB, T. (2016, August). The GeoJSON
Format. Retrieved July 17, 2017, from www.tools.ietf.org: https://tools.ietf.org/html/rfc7946

BUTZER, A. S. (2017, June 19). OpenRouteService docs. Retrieved August 17, 2017, from
https://github.com/GIScience/openrouteservice-docs:
https://github.com/GIScience/openrouteservice-docs

CHISTOPOULOU, K., ELLUL, C., & FRAM, C. (2015). Assessing the quality of OpenStreetMap building
data and searching for a proxy variable to estimate OSM building data completeness. London: Dept.
of Civil, Environmental and Geomatic Engineering, University College London.

 82

DARA-ABRAMS, D., DILUCA, G. D., KIRSTEN, KREISER, K., MEHYAR, M., NESBITT, D., et al. (2017,
August 10). valhalla_build_config. Retrieved August 29, 2017, from https://github.com/valhalla:
https://github.com/valhalla/valhalla/blob/master/scripts/valhalla_build_config

DESTATIS. (2016, September 30). Gemeindeverzeichnis. Retrieved March 31, 2017, from
www.destatis.de:
https://www.destatis.de/DE/ZahlenFakten/LaenderRegionen/Regionales/Gemeindeverzeichnis/Adm
inistrativ/Archiv/GVAuszugQ/AuszugGV3QAktuell.xls?__blob=publicationFile

DEUTSCHES BUNDESAMT FÜR BEVÖLKERUNGSSCHUTZ UND KATASTROPHENHILFE. (2005).
www.bbk.bund.de/DE/Servicefunktionen/Glossar/_function/glossar.html. Retrieved March 21, 2017,
from BBK - Bundesamt für Bevölkerungsschutz und Katastrophenhilfe:
http://www.bbk.bund.de/DE/Servicefunktionen/Glossar/_function/glossar.html?lv3=1948880&lv2=4
968152

DEUTSCHES BUNDESMINISTERIUM DES INNERN. (2017). http://www.bevoelkerungsschutz-
portal.de/BVS/DE/Zustaendigkeiten/Feuerwehr/feuerwehr_node.html. Retrieved March 21, 2017,
from Bevölkerungsschutz-Portal des Bundesministeriums des Innern:
http://www.bevoelkerungsschutz-
portal.de/BVS/DE/Zustaendigkeiten/Feuerwehr/feuerwehr_node.html

DIBBELT, J., STRASSER, B., & WAGNER, D. (2015). Customizable Contraction Hierarchies . Karlsruhe:
Karlsruhe Institut of Technology.

DIJKSTRA, E. W. (1959, June 11). A Note on Two Problems in Connexion with Graphs. Numerische
Mathematlk , pp. 269-271.

DIJKSTRA, E. W. (2001, August 2). An Interview With Edsger W. Dijkstra. (P. L. Frana, Interviewer)

DILUCA, K., GEARHART, D., KNISELY, G., KREISER, K., & NESBITT, D. (2015, June 04). Introducing
Valhalla. Retrieved August 04, 2017, from https://mapzen.com:
https://mapzen.com/blog/introducing-valhalla/

DILUCA, K., GEARHART, D., KNISELY, G., KREISER, K., NESBITT, D., & WILTON, A. (2017, August 22).
Release notes. Retrieved August 29, 2017, from https://github.com/valhalla:
https://github.com/valhalla/valhalla-docs/blob/master/release-notes.md

DIN DEUTSCHES INSTITUT FÜR NORMUNG E.V. (2017). DIN Standards. Retrieved July 27, 2017, from
http://www.din.de: http://www.din.de/en/about-standards/din-standards

DIN-NORMENAUSSCHUSS FEUERWEHRWESEN. (2016, November 10). Feuerwehrfahrzeugkonzeption
des DIN-FNFW - Feuerwehrfahrzeug-Typenliste der gängigsten genormten Fahrzeuge. Retrieved July
27, 2017, from www.din.de:
http://www.din.de/blob/118608/dff262dbff60605342f62268416b13e6/feuerwehrfahrzeug-
typenliste-21-fassung-2016-11-data.pdf

DOMSCHKE, D. W. (1981). Logistik: Transport. Grundlagen, lineare Transport- und Umladeprobleme.
München: R. Oldenbourg Verlag GmbH.

 83

DOUGLAS, D. H., & PEUCKER, T. K. (1973, December). Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. The Canadian cartographer , pp. 112-
122.

DUDEN. (2017). Netzwerk, das. Retrieved July 18, 2017, from www.duden.de:
http://www.duden.de/rechtschreibung/Netzwerk

ELLERSIEK, T. (2017, April 29). OpenRouteService with new API, functions and look. Retrieved August
17, 2017, from http://k1z.blog.uni-heidelberg.de: http://k1z.blog.uni-
heidelberg.de/2017/04/29/openrouteservice-with-new-api-functions-and-look/

ESRI. (2017). Which areas are within four minutes of a fire station? Retrieved August 21, 2017, from
http://desktop.arcgis.com: http://desktop.arcgis.com/en/analytics/case-studies/which-areas-are-
within-four-minutes-of-a-fire-station.htm?lg=en

EUROPEAN COMITTEE FOR STANDARDIZATION: CEN AFFILIATES. (2017). CEN Affiliates. Retrieved July
26, 2017, from https://standards.cen.eu: https://standards.cen.eu/dyn/www/f?p=CENWEB:9:::NO:::

EUROPEAN COMITTEE FOR STANDARDIZATION: CEN MEMBERS. (2017). CEN Members. Retrieved July
26, 2017, from https://standards.cen.eu: https://standards.cen.eu/dyn/www/f?p=CENWEB:5:::NO:::

EUROPEAN COMITTEE FOR STANDARDIZATION: LIST OF COMPANIONS. (2017). List of Companion
Standardization Bodies. Retrieved July 26, 2017, from https://standards.cen.eu:
https://standards.cen.eu/dyn/www/f?p=CENWEB:60:::NO:::

FISCHER, C. (2013, August). www.christian-fischer.info/2013/08. Retrieved March 21, 2017, from
www.christian-fischer.info: http://www.christian-fischer.info/2013/08/der-selbstbetrug-mit-der-
hilfsfrist/

FISCHER, M. M. (2003). GIS AND NETWORK ANALYSIS. ERSA conference papers, European Regional
Science Association.

FISCHER, T. (2017, July 22). (B. Futterer, Interviewer)

FOSTER, C., GEARHART, D., GLENNON, A., HARDS, B., KNISELY, G., KREISER, K., et al. (2017, July 31).
Valhalla. Retrieved August 18, 2017, from https://github.com/valhalla:
https://github.com/valhalla/valhalla

FREIWILLIGE FEUERWEHR FINNENTROP. (2010). Erreichbarkeitsanalyse. Retrieved March 30, 2017,
from https://www.feuerwehr-finnentrop.org: https://www.feuerwehr-
finnentrop.org/wissenswertes/erreichbarkeitsanalyse

FUNKE, S. (2017). Contraction Hierarchies briefly explained. Stuttgart.

GEISBERGER, R. (2008). Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks. Karlsruhe: Institut für Theoretische Informatik, Universität Karlsruhe (TH).

GEOFABRIK. (2016). Map Compare. Retrieved March 30, 2017, from http://tools.geofabrik.de:
http://tools.geofabrik.de

 84

GEOFABRIK. (2016). OpenStreetMap Data Extracts. Retrieved August 29, 2017, from
http://www.geofabrik.de: http://download.geofabrik.de

GEOJSON WORKING GROUP. (n.d.). GEOJSON. Retrieved August 07, 2017, from http://geojson.org:
http://geojson.org/

GORKI, H. F., & PAPE, H. (1987). Stadtkartographie (Vol. III/1). (E. Arnberger, Ed.) Wien: Deuticke,
Franz.

GÖTZ, M., & ZIPF, A. (2012). OpenStreetMap in 3D – Detailed Insights on the Current Situation in
Germany . Avignon: AGILE 2012.

GOULD, P. R. (1969). Spatial diffusion. Washington D.C.: Association of American Geographers,
Comission on College Geography.

GRAPHHOPPER. (A). About us. Retrieved August 16, 2017, from www.graphhopper.com:
https://www.graphhopper.com/about-us/

GRAPHHOPPER. (B). GraphHopper Directions API Live Examples. Retrieved August 16, 2017, from
https://graphhopper.com: https://graphhopper.com/api/1/examples/#isochrone

GRAPHHOPPER. (C). Pricing GraphHopper Directions API. Retrieved August 16, 2017, from
www.graphhopper.com: https://www.graphhopper.com/pricing/

HAKE, G., GRÜNREICH, D., & MENG, L. (2002). Kartographie - Visualisierung raum-zeitlicher
Informationen (8. vollständig neu bearbeitete und erweiterte Auflage ed.). Berlin/ New York: de
Gruyter Lehrbuch.

HAKLAY, M., BASIOUKA, S., ANTONIOU, V., & ATHER, A. (2010, November). How Many Volunteers
Does it Take to Map an Area Well? The Cartographic Journal , pp. 315–322.

HÄRDI, R. (2017, March 2017). 2017 - Feuerwehreinsatzkarten mit OSM. Retrieved August 27, 2017,
from www.youtube.com: https://www.youtube.com/watch?v=1__IjaP1EY8

HART, P. E., NILSSON, N. J., & RAPHAEL, B. (1968, July 2). A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions of Systems Science and Cybernetics , pp.
100-107.

HARTELL, B. (2017, July 8). bjornharrtell/jsts. Retrieved September 5, 2017, from
https://github.com/bjornharrtell: https://github.com/bjornharrtell/jsts

HECHT, R., KUNZE, C., & HAHMANN, S. (2013, November 11). Measuring Completeness of Building
Footprints in OpenStreetMap over Space and Time. International Journal of Geo-Information , pp.
1066-1091.

HECHT, R., KUNZE, C., & HAHMANN, S. (2014, March 6). Zur Vollständigkeit des
Gebäudedatenbestandes von OpenStreetMap. Retrieved August 22, 2017, from www.dgfk-
mittelrhein.de: http://www.dgfk-mittelrhein.de/files/f-vortrag06032014.pdf

 85

HERLOCKER, M., GIRARD, F., NIKLAUS, P., VAN DOORN, F., & RODRIGO, F. (2016, October 28). osrm-
isochrone. Retrieved August 17, 2017, from https://github.com/mapbox/osrm-isochrone:
https://github.com/mapbox/osrm-isochrone

HOFFMANN, S., & TOBIAS, M. (2017, June 25). Nominatim installation. Retrieved August 30, 2017,
from https://github.com/openstreetmap/Nominatim:
https://github.com/openstreetmap/Nominatim/blob/master/docs/Installation.md

HURNI, L., IOSIFESCU, I., & MÜLLER, F. (2015). Assessment and Visualization of OSM Building
Footprint Quality. Rio de Janeiro: 27th International Cartographic Conference.

HÜSCH, F. (2017, July 24). (B. Futterer, Interviewer)

ITO MAP. (2017, August 25). Speed limits. Retrieved August 25, 2017, from
http://product.itoworld.com:
http://product.itoworld.com/map/124?lon=64.61833&lat=16.77172&zoom=4&open_sidebar=map_
key&fullscreen=true

KARICH, P. (2017, August 14). Flexible routing at least 15 times faster. Retrieved August 16, 2017,
from www.graphhopper.com: https://www.graphhopper.com/blog/2017/08/14/flexible-routing-15-
times-faster/

KARICH, P. (2013a, November 26). GraphHopper an Open Source and Flexible Alternative to Google
Maps API. Retrieved August 16, 2017, from https://karussell.wordpress.com/:
https://karussell.wordpress.com/2013/11/26/graphhopper-an-open-source-and-cost-efficient-
alternative-to-google-maps-api/

KARICH, P. (2013, July 22). GraphHopper Maps 0.1 – High Performance and Customizable Routing in
Java. Retrieved August 16, 2017, from www.graphhopper.com:
https://www.graphhopper.com/blog/2013/07/22/graphhopper-maps-high-performance-and-
customizable-routing-in-java/)

KARICH, P. (2017, May 31). GraphHopper Routing Engine 0.9 Released. Retrieved August 16, 2017,
from www.graphhopper.com: https://www.graphhopper.com/blog/2017/05/31/graphhopper-
routing-engine-0-9-released/

KARICH, P. (2017, July 27). Isochrone API. Retrieved August 16, 2017, from
https://github.com/graphhopper: https://github.com/graphhopper/directions-
api/blob/master/isochrone.md

KARICH, P. (2017, July 13). Isochrone in open source version of graphhopper? Retrieved August 16,
2017, from https://discuss.graphhopper.com: https://discuss.graphhopper.com/t/isochrone-in-open-
source-version-of-graphhopper/695/2

KARICH, P., & LEGRAIN, A. (2017, June 27). GraphHopper Routing Engine. Retrieved August 16, 2017,
from https://github.com/graphhoppe: https://github.com/graphhopper/graphhopper

KONRAD, T. (2017, August 22). Die OpenStreetMap-Gebäudeabdeckung in Österreich in Zahlen.
Retrieved August 22, 2017, from https://osm-austria-building-coverage.thomaskonrad.at:
https://osm-austria-building-coverage.thomaskonrad.at

 86

KREISER, K. (2016, November 16). Isochrone demo. Retrieved August 29, 2017, from
https://github.com/valhalla: https://github.com/valhalla/demos/blob/gh-
pages/isochrone/index.html

KREISER, K., & NESBITT, D. (2017, March 24). SIF - Dynamic Costing within Valhalla. Retrieved
September 6, 2017, from https://github.com/valhalla:
https://github.com/valhalla/valhalla/blob/master/docs/sif/dynamic-costing.md

LANDESFEUERWEHRVERBAND BADEN-WÜRTTEMBERG. (2008). Hinweise zur Leistungsfähigkeit der
Feuerwehr. Landesfeuerwehrverband Baden-Württemberg.

LANDESFEUERWEHRVERBAND HESSEN. (2015). Hinweise und Empfehlungen zur Durchführung einer
Bedarfs- und Entwicklungsplanung für den Brandschutz und die Allgemeine Hilfe der Städte und
Gemeinden. Landesfeuerwehrverband Hessen.

LINDEMANN, T. (2011). Rettungszeiten der Feurerwehr breim kritischen Wohnungsbrand.
BRANDSchutz - Deutsche Feuerwehr-Zeitung , 946-952.

LUDWIG, I., VOSS, A., & KRAUSE-TRAUDES, M. (2011). A Comparison of the Street Networks of
Navteq. Utrecht: International Conference on Geographic Information Science.

MACWRIGHT, T., CARRIERE, D., BORGHI, S., WINSEMIUS, R., & DEFOSSEZ, A. (2017, July 24).
turf/packages/turf-union/index.js. Retrieved September 5, 2017, from https://github.com/Turfjs:
https://github.com/Turfjs/turf/blob/master/packages/turf-union/index.js

MAPBOX. (2017, May 12). Glossary: routing profile. Retrieved July 26, 2017, from www.mapbox.com:
https://www.mapbox.com/help/define-routing-profile

MAPZEN: ELEVATION. (2017). Elevation service API reference. Retrieved August 19, 2017, from
https://mapzen.com: https://mapzen.com/documentation/elevation/elevation-service

MAPZEN: ISOCHRONE. (2017). Isochrone service API reference. Retrieved August 19, 2017, from
https://mapzen.com: https://mapzen.com/documentation/mobility/isochrone/api-reference

MAPZEN: MULTIMODAL TRANSIT ROUTING. (2017). Mapzen Multimodal Transit Routing. Retrieved
August 19, 2017, from https://mapzen.com: https://mapzen.com/projects/multimodal-transit-
demo/?d=0&lat=40.7259&lng=-73.9805&z=12&c=multimodal&st_lat=40.744273&st_lng=-
73.990328&st=Mapzen&end_lat=40.704651&end_lng=-
73.9361&end=CartoDB&use_bus=0.5&use_rail=0.6&use_transfers=0.4&dt=2017-08-22T08%3A0

MCCAULEY, T., & GRI, L. (2017, May 19). OpenRouteService. Retrieved August 17, 2017, from
https://github.com/GIScience/openrouteservice: https://github.com/GIScience/openrouteservice

MUEHRCKE, P. C. (1980). Map Use - Reading, Analysis, and Interpretation (2nd printing ed.).
Madison, Wisconsion: JP Publications.

NEIS, P. (2010, August 28). Etwas #OSM für die Feuerwehr. Retrieved March 30, 2017, from
http://neis-one.org: http://neis-one.org/2010/08/etwas-osm-fur-die-feuerwehr/

NESBITT, A. (2017, August 5). osrm-isochrone release 3.0.0. Retrieved August 17, 2017, from
https://libraries.io: https://libraries.io/npm/osrm-isochrone/3.0.0

 87

NESBITT, D. (2017, July 7). How to add new profiles to valhalla? Retrieved July 11, 2017, from
https://github.com/valhalla: https://github.com/valhalla/valhalla/issues/800

NESBITT, D. (2015, March 20). Valhalla Open Source Routing. Retrieved August 04, 2017, from
https://mapzen.com/: https://mapzen.com/blog/valhalla-intro/

NESBITT, D. (2017, February 1). valhalla/docs/thor. Retrieved July 17, 2017, from Github valhalla-
repository:
https://github.com/valhalla/valhalla/blob/cf0a1353163ef713b5899518fadb6aca5ec3afc9/docs/thor/
isochrones.md

NESBITT, D. (2017, February 1). What are Isochrone Maps? Retrieved August 19, 2017, from
https://github.com/valhalla:
https://github.com/valhalla/valhalla/blob/master/docs/thor/isochrones.md

NESBITT, D., & WILTON, A. (2017, July 7). THOR - DETERMINING THE BEST PATH. Retrieved August 19,
2017, from https://github.com/valhalla:
https://github.com/valhalla/valhalla/blob/master/docs/thor/path-algorithm.md

OPENROUTESERVICE: API FEATURES. (n.d.). API Features. Retrieved August 17, 2017, from
https://developers.openrouteservice.org: https://developers.openrouteservice.org/portal/features

OPENROUTESERVICE: APIS. (n.d.). API Catalogue. Retrieved August 17, 2017, from
https://developers.openrouteservice.org: https://developers.openrouteservice.org/portal/apis/

OPENROUTESERVICE: ISOCHRONES. (n.d.). Isochronen. Retrieved August 16, 2017, from
https://openrouteservice.org:
https://openrouteservice.org/reach?n1=47.341615&n2=8.506336&n3=12&a=47.369338,8.525054&
b=0&i=0&j1=10&j2=10&k1=en-US&k2=km

OPENSTREETMAP GERMANY. (n.d.). FAQ. Retrieved August 17, 2017, from www.openstreetmap.de:
https://www.openstreetmap.de/faq.html

OPENSTREETMAP WIKI: AMBULANCE STATIONS. (2016, May 11).
Tag:emergency=ambulance_station. Retrieved August 31, 2017, from http://wiki.openstreetmap.org:
http://wiki.openstreetmap.org/w/index.php?title=Tag:emergency%3Dambulance_station&oldid=129
9190

OPENSTREETMAP WIKI: BORDER. (2017, July 3). Tag:boundary=administrative. Retrieved August 22,
2017, from http://wiki.openstreetmap.org:
http://wiki.openstreetmap.org/w/index.php?title=Tag:boundary%3Dadministrative&oldid=1487373

OPENSTREETMAP WIKI: CITY BOUNDARIES OF GREAT BRITAIN IN OSM. (2017, April 22). Ordnance
Survey Opendata. Retrieved August 25, 2017, from http://wiki.openstreetmap.org:
http://wiki.openstreetmap.org/w/index.php?title=Ordnance_Survey_Opendata&oldid=1463673

OPENSTREETMAP WIKI: FIRE BOUNDARY. (2016, September 15). Key:fire_boundary. Retrieved August
31, 2017, from http://wiki.openstreetmap.org:
http://wiki.openstreetmap.org/w/index.php?title=Key:fire_boundary&oldid=1344566

 88

OPENSTREETMAP WIKI: FIRE STATIONS. (2016, December 3). DE:Tag:amenity=fire_station. Retrieved
August 31, 2017, from http://wiki.openstreetmap.org:
http://wiki.openstreetmap.org/w/index.php?title=DE:Tag:amenity%3Dfire_station&oldid=1400938

OPENSTREETMAP WIKI: GRAPHHOPPER. (2017, June 9). GraphHopper. Retrieved August 16, 2017,
from http://wiki.openstreetmap.org: http://wiki.openstreetmap.org/wiki/GraphHopper

OPENSTREETMAP WIKI: ISOCHRONE. (2017, March 29). Isochrone. Retrieved June 20, 2017, from
Openstreetmap Wiki: http://wiki.openstreetmap.org/w/index.php?title=Isochrone&oldid=1452891

OPENSTREETMAP WIKI: OPENROUTESERVICE. (2017, May 29). OpenRouteService. Retrieved August
17, 2017, from http://wiki.openstreetmap.org:
http://wiki.openstreetmap.org/w/index.php?title=OpenRouteService&oldid=1478898

OPENSTREETMAP WIKI: OPENROUTESERVICE TALK. (2014, December 1). Talk:OpenRouteService.
Retrieved August 17, 2017, from http://wiki.openstreetmap.org:
http://wiki.openstreetmap.org/w/index.php?title=Talk:OpenRouteService&oldid=1114199

OPENSTREETMAP WIKI: RESIDENTIAL. (2016, November 6). DE:Tag:landuse=residential. Retrieved
Augst 22, 2017, from http://wiki.openstreetmap.org:
http://wiki.openstreetmap.org/w/index.php?title=Tag:landuse%3Dresidential&oldid=1394404

OPENSTREETMAP WIKI: ROUTING. (2016, December 15). Routing. Retrieved March 24, 2017, from
wiki.openstreetmap.org: http://wiki.openstreetmap.org/w/index.php?title=Routing&oldid=1409048

OPENSTREETMAP WIKI: ZOOM LEVELS. (2016, August 2016). Zoom levels. Retrieved March 30, 2017,
from http://wiki.openstreetmap.org: http://wiki.openstreetmap.org/wiki/Zoom_levels

OPENSTREETMAP: COPYRIGHT AND LICENSE. (n.d.). Copyright and License. Retrieved June 29, 2017,
from www.openstreetmap.org: http://www.openstreetmap.org/copyright/en

OXFORD DICTIONARY. (2017). oxforddictionaries. Retrieved March 03, 2017, from
https://en.oxforddictionaries.com: https://en.oxforddictionaries.com/definition/emergency_services

PATEL, A. (2017, March 16). Introduction to A*. Retrieved March 30, 2017, from
http://theory.stanford.edu:
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

PITTHAN, A. (2017, July 25). (B. Futterer, Interviewer)

PLATTNER, H. P. (2003). Wir lassen die Feuerwehr im Dorf. Retrieved March 28, 2017, from
www.feuerwehr-balduinstein.del: http://www.feuerwehr-
balduinstein.de/plaintext/sicherheitstipps/wirlassendiefeuerwehrimdorf/index.html

PORSCHE AG. (1978). Feuerwehrsystem - O.R.B.I.T. - Entwicklung eines Systems zur Optimierten
Rettung Brandbekämpfung mit Integrierter Technischer Hilfeleistung.

PREVENT ING. (2017). Bedarfsplanung. Retrieved March 30, 2017, from https://preventing.de:
https://preventing.de/bedarfsplanung/

 89

RAMER, U. (1972, November). An iterative procedure for the polygonal approximation of plane
curves. Computer Graphics and Image Processing , pp. 221–316.

RAMM, F. (2011, January 28). OpenStreetMap Die freie WikiWeltkarte Übersicht – Chancen –
 Grenzen. Retrieved August 22, 2017, from www.geofabrik.de:
http://www.geofabrik.de/media/2011-01-28-dgfk-openstreetmap.pdf

RAMM, F. (2017, March 23). Routing-Engines für OpenStreetMap. Passau, Bavaria, Germany.

RAMM, F., & TOPF, J. (2010). OpenStreetMap - Die freie Weltkarte nutzen und mitgestalten (3.
Auflage ed.). Berlin: Lehmanns Media.

RYLOV, M. (2015, February 26). Major Update for OpenRouteService Backend. Retrieved August 17,
2017, from http://k1z.blog.uni-heidelberg.de: http://k1z.blog.uni-heidelberg.de/2015/02/26/ors-
new-backend/

SÄCHSISCHESES STAATSMINISTERIUM DES INNERN. (2005, December 01). Empfehlung des
Sächsischen Staatsministeriums des Innern zum Brandschutzbedarfsplan. Sächsisches Amtsblatt , pp.
1168-1181.

SCHWARZE, B. (2005). Erreichbarkeitsindikatoren in der Nahverkehrsplanung. Dortmund: Institute of
Spatial Planning of the Technical University of Dortmund.

SEDGEWICK, R. (1992). Algorithmen. Bonn: Addison-Wesley.

STAATLICHE FEUERWEHRSCHULE WÜRZBURG. (2016). Feuerwehrfahrzeuge. Würzburg: Staatliche
Feuerwehrschule Würzburg.

STADT KARLSRUHE BRANDDIREKTION. (2006). Brandschutzbedarfsplan der Stadt Karlsruhe.
Karlsruhe.

STALLMAN, R. M. (1986, February). What is the Free Software Foundation? GNU'S BULLETIN , p. 8.

SWAGGERHUB. (2017, July 24). openrouteservice 4.1. Retrieved August 17, 2017, from
https://app.swaggerhub.com: https://app.swaggerhub.com/apis/OpenRouteService/ors-api/4.1

SYDEKUM, F. (2013, September 03). Open Source Software und Free Software – Hintergründe,
Ideologien und Vergleiche. Retrieved August 10, 2017, from www.estrategy-magazin.de:
https://www.estrategy-magazin.de/open-source-software-und-free-software-hintergruende-
ideologien-und-vergleiche.html

THW. (n.d.). www.thw.de/DE/THW/Bundesanstalt/Ehrenamt/ehrenamt_node.html. Retrieved March
21, 2017, from THW - Technisches Hilfswerk:
https://www.thw.de/DE/THW/Bundesanstalt/Ehrenamt/ehrenamt_node.html

TJCN. (2016, April 18). Karamay City Statistical Communique on National Economic and Social
Development 2015. Retrieved March 31, 2017, from www.tjcn.org:
http://www.tjcn.org/tjgb/201604/32814_2.html

VELDEN, L. (2014). Kürzeste Wege in Graphen: Der Dijkstra-Algorithmus. Retrieved March 30, 2017,
from www-m9.ma.tum.de: http://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index_de.html

 90

VERSION EYE GMBH. (n.d.). osrm-isochrone : 3.0.0. Retrieved August 17, 2017, from
www.versioneye.com: https://www.versioneye.com/nodejs/osrm-isochrone/3.0.0

WIKIPEDIA: CITY BOUNDARIES OF GERMANY IN OSM. (2016, February 5). Wikipedia:WikiProjekt
Kommunen und Landkreise in Deutschland/OSM. Retrieved August 25, 2017, from
https://de.wikipedia.org:
https://de.wikipedia.org/w/index.php?title=Wikipedia:WikiProjekt_Kommunen_und_Landkreise_in_
Deutschland/OSM&oldid=151120912

WIKIPEDIA: Douglas-Peucke. (2016, September 29). Douglas-Peucker-Algorithmus. Retrieved August
24, 2017, from https://de.wikipedia.org: https://de.wikipedia.org/w/index.php?title=Douglas-
Peucker-Algorithmus&oldid=158329000

WIKIPEDIA: HILFSFRIST. (2017, January 23). Hilfsfrist. Retrieved March 23, 2017, from
www.wikipedia.de: https://de.wikipedia.org/w/index.php?title=Hilfsfrist&oldid=161917081

WIKIPEDIA: OPEN SOURCE. (2017, August 07). Open-source model. Retrieved August 10, 2017, from
https://en.wikipedia.org: https://en.wikipedia.org/w/index.php?title=Open-
source_model&oldid=794348418

WIKIPEDIA: OPISOMETER. (2016, November 6). Opisometer. Retrieved March 30, 2017, from
https://en.wikipedia.org: https://en.wikipedia.org/w/index.php?title=Opisometer&oldid=748120998

WIKIPEDIA:MAP SERVICE COMPARISON. (2017, August 17). Comparison of web map services.
Retrieved August 24, 2017, from https://en.wikipedia.org:
https://en.wikipedia.org/w/index.php?title=Comparison_of_web_map_services&oldid=795915447

WITT, W. (1970). Thematische Kartographie - Methoden und Probleme, Tendenzen und Aufgaben (2.
Auflage ed.). Hannover: Gebrüder Jänecke Verlag.

WOLTER, M. (2017, July 31). (B. Futterer, Interviewer)

 91

Appendix

i Glossary of specific words in the field of emergency services
To facilitate the comprehension and to avoid misunderstandings regarding the emergency service
specific terms they are translated in the following glossary. For further translations in this field see
the emergency service specific dictionaries at:
 http://ff-eimsbuettel.de/index.htm?/siteinfo/infoserv/start.shtml
 http://www.feuerwehr-aying.de/infos/deutsch-englisch.php
 https://www.vfdb.de/lexikon.

Aerial Ladder Platform Teleskopmast (TM), Hubarbeitsbühne (HAB)
alarm response area Ausrückebereich
alerting of the emergency services Alarmierung der Einsatzkräfte
application area Einsatzbereich
arrival at the scene Ankunft am Einsatzort

blue flashing light Blaulicht
breathing apparatus unit Gerätewagen-Atemschutz (GW-A)

career fire brigade Berufsfeuerwehr (BF)
career fire fighter Berufsfeuerwehrmann
chapter Ortsverband (OV) des THW
civil protection Zivilschutz, Bevölkerungsschutz,
 Katastrophenschutz (KatS)
Command Support Unit Einsatzleitwagen (ELW)
Command Vehicle Kommandowagen (KdoW)
critical apartment fire in an upper floor kritischer Wohnungsbrand im Obergeschoß
customs Zoll

degree of achievement Erreichungsgrad
Development of a system to optimize rescue, Entwicklung eines Systems zur Optimierten
fire fighting with the use of integrated technical Rettung, Brandbekämpfung mit Integrierter
assistance Technischen Hilfeleistung (ORBIT)

emergency Notfall, Einsatz
Emergency Ambulance Rettungswagen (RTW)
emergency call Notruf
emergency drive Einsatzfahrt
Emergency Medical Services Rettungsdienst (RD)
Emergency Physician Car Notarzteinsatzfahrzeug (NEF)
emergency service Einsatzorganisation
 in Deutschland: Behörden und
 Organisationen mit Sicherheitsaufgaben
 (BOS)
emergency service dispatching Disposition von Einsatzfahrzeugen
emergency vehicle Einsatzfahrzeug
Equipment Vehicle Gerätekraftwagen (GKW)

 92

Federal Agency for Technical Relief (Bundesanstalt) Technisches Hilfswerk (THW)

Federal Office of Civil Protection and Bundesamt für Bevölkerungsschutz und
Disaster Assistance Katastrophenhilfe (BBK)
fire brigade Feuerwehr (FW)
Fire Engine Löschfahrzeug (LF)
fire station Feuerwehrgerätehaus
fire truck Feuerwehrfahrzeug
first unit ersteintreffende Einheit
functional strength Funktionsstärke

governmental BOS staatliche BOS

HazMat (Hazardous Materials) vehicle Gerätewagen-Gefahrgut (GW-G)
Heavy Rescue Vehicle Rüstwagen (RW)

incident Vorfall, Ereignis

Mobile Intensive Care Unit Intensivtransportwagen (ITW)
Multi-Purpose Vehicle Mehrzweckkraftwagen (MzKW)

non-governmental BOS nicht staatliche BOS
non-police BOS nicht polizeiliche BOS
non-police emergency services nicht polizeiliche Einsatzorganisationen

police Polizei
police BOS polizeiliche BOS
protection of the constitution Verfassungsschutz
public-safety answering point Einsatzleitstelle, Leitstelle

on patrol auf Streife
operation Einsatz
Operational Support Unit Gerätewagen-Logistik (GW-L)
outbreak of a fire Brandausbruch

Patient Transport Ambulance Krankentransportwagen (KTW)
Personnel Carrier Mannschaftstransportwagen (MTW)
public-safety answering point Einsatzleitstelle

References to the capability of the fire brigades Hinweise zur Leistungsfähigkeit der
in Baden-Württemberg Feuerwehr in Baden-Württemberg
reporting time Meldefrist
Rescue Helicopter Rettungshubschrauber (RTH)
rescue operations Rettungsmaßnahmen
response time Hilfsfrist

scene Einsatzort, Einsatzstelle
search and rescue of people Suchen und Retten von Personen
sirens Martinshorn, Folgetonhorn

 93

special signs Sondersignal
special vehicle Sonderfahrzeug
Squad Truck Mannschaftslastwagen (MLW)
State Fire Brigade Association Landesfeuerwehrverband (LFV)
State Fire Brigade School Landesfeuerwehrschule (LFS)
(non-police emergency service) station (nicht polizeiliche(s)) Gerätehaus, Wache
standard incident standardisierten Schadensereignis
succeeding unit nachrückende (Einsatz-)Kraft/ Einheit
successful reanimation erfolgreiche Reanimation
Swap Body Vehicle (also called Prime Mover) Wechselladerfahrzeug (WLF)

talk and disposition time Gesprächs- und Dispositionszeit
technical assistance Technische Hilfeleistung (TH)
test drive Testfahrt
THW federal association THW Bundesverband
time for investigation and time until the first actions Eingreifzeit und Zeit bis die ersten
become effective Maßnahmen zu wirken beginnen
travel time Anfahrtszeit
turnout Ausrücken
turnout time Ausrückezeit
Turntable Ladder Drehleiter (DL)

volunteer Freiwillige(r)
volunteer fire brigade Freiwillige Feuerwehr (FF)
volunteer fire fighter freiwilliger Feuerwehrmann

Water Tender Tanklöschfahrzeug (TLF)
Working Group of the Chiefs of Career Fire Brigades Arbeitsgemeinschaft der Leiter der
 Berufsfeuerwehren (AGBF)

	Thesis_Deckblatt
	Master_Thesis_Report_Futterer_Benedikt_part2
	I Abstract
	II Acknowledgment
	III Statutory declaration
	IV Table of contents
	V List of figures
	VI List of tables
	VII List of abbreviations
	1 Introduction
	1.1 Problem
	1.2 Aim
	1.3 Structure of the written thesis report

	2 Definitions and explanations
	2.1 Accessibility
	2.2 Network, Graph and Node-Edge model
	2.3 Accessibility analysis
	2.4 Emergency services
	2.5 Response time and its separate phases
	2.6 Isochrones
	2.7 Open source
	2.8 OpenStreetMap
	2.9 GeoJSON

	3 The suitability of OpenStreetMap data for accessibility analysis
	4 Algorithms
	4.1 Routing algorithms
	4.1.1 Dijkstra algorithm
	4.1.2 A* algorithm
	4.1.3 Contraction Hierarchies

	4.2 Other algorithms
	4.2.1 CONREC algorithm
	4.2.2 Douglas-Peucker algorithm

	5 State of the art methods of accessibility analysis
	5.1 Circle-/beeline-method
	5.2 Road Axis-Method
	5.2.1 Manual methods
	5.2.1.1 Opisometer method
	5.2.1.2 Test drive method

	5.2.2 Digital non proprietary methods
	5.2.2.1 GraphHopper Isochrone API
	5.2.2.2 openrouteservice.org
	5.2.2.3 OSRM-isochrone
	5.2.2.4 Valhalla

	5.2.3 Digital proprietary methods

	6 Concept
	6.1 Target definition
	6.2 Graphical User Interface (GUI)
	6.3 Profiles
	6.4 Test and selection of the routing algorithm

	7 Implementation
	7.1 Graphical User Interface
	7.1.1 Layout
	7.1.2 Menus

	7.2 Integration of Valhalla
	7.2.1 Primitive map
	7.2.2 Settings
	7.2.2.1 Default settings
	7.2.2.2 Adapted settings

	7.3 Vehicle Profiles
	7.4 Coded functionality
	7.4.1 Isochrone computation
	7.4.2 File handling
	7.4.2.1 Export to a GeoJSON file
	7.4.2.2 Import of GeoJSON files
	7.4.2.3 Merge several GeoJSON files

	7.4.3 Inspection of the result
	7.4.4 Geocoder
	7.4.5 Clear map function

	8 Testing/ verification
	9 Summary and outlook
	9.1 Summary
	9.2 Outlook and possible improvements

	List of literature
	Appendix
	i Glossary of specific words in the field of emergency services

